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1. INTRODUCTION AND SUMMARY

This Interim technical report describes research performed on the distri-

buted processing of sensor data for situation assessment in a distributed sensor

network (DSN). This research has been performed at Advanced Information &

Decision Systems under the contract entitled "Distributed Hypothesis Testing In

Distributed Sensor Networks".

1.1 DSN PROBLEM DESCRIPTION

We assume a system structure as in Figure 1-1. There is a system of distri-

buted sensor/processor nodes. Each node may have one or more sensor types,

and the sensors from diflerent nodes may have overlapping coverage. The sensors

collect, data from the environment and pass them on to the processors (processing

nodes). The processing nodes process the sensor data and communicate with

other nodes through the communication network to obtain an assessment of the

state of the world. It is generally assumed that no single node possesses complete

information and each node may have a different world model. The processing

nodes can also control the sensors to improve on the performance of the overall

system.

A dis- " :te'i sensor network can be used for many applications. W,, ,ir-

particularly interested in a. DSN which is used for the tracking and cassIlcat:m:

of multiple targets. The target environment is assumed to be denise. so that

determining the origins of the measurements In a partlcu!ar sensor roport is not

always e y. The problem Is further complicated by the presence of false alarms

and missing target reports. In such a network, tracking and cl:issifihation Is

highly dependent on Identifying the right data association hypo le"es Since I'ehe

nodes in general have access to different Information, communl('ation among the

nodes ('an greatly Improve the performance of the system. The problem Is thus

one of distributed hy pothesis formation and evaluation, which we can abbreviate
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as distributed hypothesis testing.

In our previous DSN project we Initiated research on the distributed track-

ing of multiple targets by the nodes of a distributed sensor network. In the fol-

lowing we shall review a model of the processing node that has been proposed.

1.2 PROCESSING NODE MODEL

The processing nodes are the main Information processing units In the DSN.

Each processing node collects measurements from a set of sensors. Its function Is

to process the local sensor data to form an assessment of the state of the world,

to combine the Information obtained from other nodes with the local Information

to update its assessment, to distribute Information to other nodes, and to per-

forms these functions effectively. These functions are performed In four separate

modules wlthln each processing node (see Figure 2-2). In the following we shall

discuss the modules In more detail.

1.2.1 Generalized Tracker/Classifier

This module Is responsible for the local data processing before any com-

munication with the other nodes takes place. Since the objective of the system

under consideration is the tracking and classification of multiple targets, this

module is a multitarget tracker. In the previous project, we have developed a

general theory for multItarget tracking which is Implemented in the form of the

Generalized Tracker/Classifier (GTC). The GTC has the structure shown In

Figure 2-3 and itself consists of four modules. The hypothesis formation module

forms multiple hypotheses from the sensor data, each consisting of a collection of

tracks to explain the origins of the measurements in each data set. These

hypotheses are then evaluated by the hypothesis evaluation module with respect

to their probabilities of being true. The fillering and parameter estirmation

module generates state estimates and cl:,ssiflcations for each track. It Is essential

for hypothesis evaluation and can thus be viewed as a submodule. To stay

within the computatlonal constraints of each node, the hy potheses arc pruned,

comb11ned. ' clistered, etc. This takes p:7'c int he hypothcsi. Ynatia (cmCt n1llodl .
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system. Information distribution can be fixed a priori for simple sylerns, fr it

can be highly adaptive to the information needs In the system.

1.2.4 Resource allocation

This module allocates the resources under the control of the processing node

to maintain or Improve the performance of the system. Some typical resources

Include sensor resources and processing resources. Both resource allocation and

information distribution can affect the information available in the network.

Thus their actIvities should be coordinated.

1.3 PROJECT GOALS

Many technical Issues have to be addressed before DSNs can be designed,

built and operated to achieve their military potential. Such issues include the

representation and processing of hypotheses, information fusion, communication

strategies, resource allocation, adaptation, system architecture, etc. In our previ-

ous DSN project, we have successfully addressed some of these issues. The goal

of our current effort Is to further advance the state of the art In distributed

hypothesis testing techniques In DSNs. This will provide more Insight as to how

a DSN should be designed. Specifically, we Intend to accomplish the following

technology gols:

1. l)eveirp intelligent distributed lgorithms applicab.le to a wide range of

situatins such as different network configurations, sensor types, target

rod(ils, such algorlt.hms should also be adaptive tc changing nei work

conditions and make efficient use of sensor resources.

2. Evaluate and adapt, these algorithms for real-time implementation.

I. )csign experiments to test and evaluate the algorithnis in a more realis-

Iv swen:arlo such as tie incoln ILaboratory test-bed.

In (.tnipatunml to 1h(s, t tchinolovy goals, our plan is to ev\e(l(q) ;i sinulatilon



environment to test the algorithms experimentally on different scenarios

1.4 PROJECT STATUS

There are two parts to our research effort. The first consists of develop-

ment of algorithms for a DSN and the other is concerned with the developmient

of a simulation environment, to test the algorithms and to evaluate the perfor-

mance of the system experimentally. In the following we discuss their status

separately.

We have considered information infusion for DSNs with arbitrary communi-

cation patterns among the nodes. The key problems are the formation of possi-

ble (or meaningful) global hypotheses from a group of local hypotheses and the

evaluation of their probabilities. A set of local hypotheses can be inconsistent so

that they cannot be fused to form a global hypothesis. The local probabilities of

the local hypotheses may depend on common information which needs to be

identified. In the previous project we developed fusion algorithms assuming

broadcast communication. In the current project we have obtained fusion algo-

rithms for arbitrary communication. The algorithms are based on modeling the

events in the DSN by means of an Information graph. To use these algorithms,

the histories of the hypotheses and tracks have to be part of the Information

communicated. Then each node can determine the fusablilty of the hypotheses

and tracks and the common Information which has to be removed in evaluating

the hypotheses. Information distribution strategies have also been considered.

These include strategies which depend only on the local Information state and

those whl,', rnodce the behavior of other nodes.

The theory of multitarget tracking has been extended to handle targets

with a structured state space and dissimilar sensors which observe different. coni-

ponents )n the target. state. The resulting GTC for processing of local sensor

data and the Information fusion algorithms are very similar to the usual ease.

Slowever. a multi level hypothesis formation and evaluation processing archilte('c-

ture Is often possible. Consider a network with two nodes. Each node would

form hypotheses b:Lsed on the local measuremtents and the tracks' would he

(esCrilli, In the local f,:iture spmtee. I)urlng the fusion process. kmwledge on thI'

1-9







An appendix contains the proofs of the results In Section 2.
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2. INFORMATION FUSION FOR ARBITRARY COMMUNICATION

In this section we present algorithms used by each node to fuse the Infor-
mation received from the other nodes with the local Information to obtain an
updated situation assessment. In (1] fusion algorithms for a broadcast communi-
cation pattern were presented. The results of this section extend those algo-
rithms to arbitray communication patterns. In Section 2.1 we describe the infor-

mation fusion problem in the context of hypothesis formation and evaluation in
multitarget tracking. In Section 2.2 a model for Information fusion In terms of
an Information graph Is given. Section 2.3 describes the hypothesis formation
and evaluation algorithms assuming arbitrary communication.

2.1 THE INFORMATION FUSION PROBLEM

In the following we state the Information fusion problem faced by each
node in the DSN with emphasis on the relevant Issues in multitarget tracking.
The formalism Is based on the theory of multitarget tracking developed in the

previous DSN project [1] and 12].

2.1.1 Local processing

The basic unit of information In the DSN Is a sensor report z(t .a ). This is
the output of a sensor s at a time i and is denoted as

((y,(I .s ))j, " ,Nm (t ,s ).t . ). The index k =(t ,s) Identifies the sensor report (by
time and sensor) uniquely and is called the sensor report index or data index.

N ki
Nm (k) Is the number of measurements In the report and (y,(k)),N_ 2 s the actual
measurement vector. At any given time, let Z be the data set consisting of a set
of sensor reports and K be the associated data index set, i.e, the set of the Indices

for all the sensor reports contained In Z. The measurement index set correspond-

Ing to Z Is (lefiledi as
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J U (,....N. k)X{k (2.1)
tkEK

Each element (j,k)=(jt,s) In this set represents the J-th measurement gen-

erated at time t by sensor a. The specific value of the measurement is y,(1 .8 ).

According to the system model introduced in Section 1, each node processes the

sensor data as they arrive using the Generalized Tracker/Classifier (GTC). The

output of the GTC when the data Is Z consists of the information state 1;(Z)

defined as

L(Z) = (T(J),(pt(z 1rZ)),ETM, H(J), (P(A=X I Z)),EH(J), t(K))

where

" T(J), the set of possible tracks defined on J. Each track r Is a subset of

J, i.e., rCJ and represents the measurement indices coming from a single

target. It Is usually assumed that a track cannot have two measurement

Indices In the same sensor report, or the sensor resolution Is such that

there are no split measurements. Such tracks are then said to be possi-

ble.

" Pt (x I rZ) Is the state distribution for a track. Given the track r, the set

of measurements in Z for a hypothesized target Is known. From this the

distribution of Its state x (position, velocity, classification, etc.) at a time

i can be found and Is a traditional estimation problem. Normally this

would be given In terms of a probability distribution; but if the state can

be approximated by a Gaussian random vector, the distribution can be

expressed In terms of Its mean and covarlance.

" H(J) is the set of possible data-to-data association hypotheses defined on

J. Each data-to-data association hypothesis X is a possible explanation

about the origins of all the measurements In Z. Each hypothesis consists

of a set of tracks, i.e., X = {r,.r.. The number of tracks In X Is the

number or targets hypothesized to have been detected in the data set Z.

Each track r Is the set of measurement Indices from a hypothesized target

and any measurement Index not Included In the hypothesis is

hypothesized to be a false alarm. We assume that the sensor resolution is

such that there are no merged mea.surements and thus there are no
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overlapping tracks In the same hypothesis. The set of hypotheses satisfy-

ing this property is said to be possible. This represents all mutually

exclusive and collectively exhaustive explanations about the origins of the

measurements in Z.

" P(A=X IZ) Is the probability of that the true data association A Is a

hypothesis X given all the measurements in Z. Its computation Is the key

operation In any multiple hypothesis approach to multitarget tracking

and recursive algorithms were given in [1] and [2].

" t(K) is the expected number of undetected targets up to and including

K. It is Important for initiating new tracks. If L.(K) decreases, the likeli-

hood of any measurement coming from a previously undetected target

also decreases.

iLhe information state defined above constitutes a state for multitarget

tracking since It contains all the relevant information present In the cumulative

data set Z. As long as the information state E(Z) Is known, the GTC can con-

tinue to process any new sensor report even though the actual data Z is no

longer available. In the GTC, the hypothesis formation module generates the

sets T(J) and H(J) while the hypothesis evaluation module computes the remain-

ing components in the information state. The hypothesis management module is

used to control the combinatorics.

2.1.2 Information Fusion Problem

We assume that each node communicates the information state to the other

nodes. Suppose a node receives some messages from the other nodes. It has to

fuse or Integrate this information with the local information to improve on the

local estimate. There are many ways or performing fusion. In our work fusion is

based on the following philosophy. The ideal case with the highest performance

(but also the highest communication cost) is when the nodes communicate the

actual sensor data through the network Instead of the processes Information. In

this case a node would be able to generate an optimal information state based on
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all the data available. Since In a more realistic DSN only the Information states

are communicated, an appropriate objective for fusion is to reconstruct the

optimal Information state based on the information states received from the other

nodes. To facilitate further discussion, we call the data available to each node

before communication takes place as local data and the maximum data set avail-

able after communication as global data. Local and global information states,

hypotheses, tracks, etc. are all defined analogously.

There are thus two steps to the fusion process. The first step in the fusion

process consists of generating the possible track and hypothesis sets based on the

global data from the local tracks and hypotheses. Since the local data are the

part of the global data available to the nodes at the given times, the global

tracks and hypotheses when restricted to the local data should give the local

tracks and hypotheses. This implies that a certain combination of local tracks

and hypotheses should not be fused, I.e., there may not exist global tracks and

hypotheses for given sets of local tracks and hypotheses. In Figure 2-1, the two

tracks ri and r., are two local tracks maintained at two different nodes. They

cannot be fused since the resulting global track would have two different meas-

urements in the same sensor report 1, thus violating the no split measurement

assumption. On the other hand, r, and r3 can be fused to yield a global track

rUr2. The interpretation of this global track Is that the measurements In both

tracks , and r. come from the same target. Tracks r, and r4 can also be fused.

However, they do not have to be and in that case the two tracks correspond to

two different targets. The fusability question also needs to be addressed at the

hypothesis level. Each local hypothesis is a possible explanation about the origins

of the local measurements. rl'has If the local hypotheses are Incompatible, they

cannot be fused to obtain a global hypothesis. This is Illustrated In Figure 2-2

where each node i has two local hypotheses X,, j =- 1,2 derived from the two com-

mon hypotheses )j, j=1,2. Since V and X2 are mutually exclusive, the local

hypotheses \ 2 and X.' are not fusable.

The second step In the fusion process consists in generating the state distri-

butions of the global tracks and the probabilities of the global hypotheses using

the local distributions and probabilities. If the nodes communicated In the past.

the local statistics would not be Independent. A key problem In fusion is to Iden-

tify the common Information shared by the nodes and make sure It Is not used

2-4
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more than once in generating the global statistics.

2.2 INFORMATION GRAPH

In performing Information fusion, it Is necessary to Identify the Information

available to the nodes In the network at various times and how the information

of one node at one time Is related to that of another node at a different time.

For example, whenever two nodes communicate some common Information Is

shared between the nodes. The existence of this shared Information would have

to be recognized in any future information fusion. Specifically, before any global

hypothesis can be generated, the fusability of the local hypotheses have to be

checked based on their histories. Furthermore, when the probabilities of the

hypotheses are to be evaluated, the common Information should only be used

once. This necessitates tracking the histories of the communication and can be

accomplished conveniently using the Information graph. The information graph

introduced below can also be viewed as an abstract model for a DSN.

2.2.1 Information graph model

We assume that there Is a set of processing nodes called N. Each node n In

N receives data from a set of sensors called S such that Sn l Sn'=0 for n #n',

I.e., each sensor 8 only reports to one processing node. Let S= U Sn be the set
nEN

of all sensors. If a sensor o generates a report at time t with value z, the report

Is denoted as (zi,s ) or simply z (t,s ). Each sensor report Is the basic unit of

Information and the set of all such reports is denoted by Z called the total infor-

mation or data set. Each sensor report Is Indexed by k =(t,), i.e., the time t

when It is generated and the sensor 8 responsible for Its generation. The set of

all such Indices Is called the total data index set and denoted as

K=((t .s) I (z .t .s )EZ for some z } (2.2)

At any one time, a node's information may consist of only a subset Z of Z. Such

a Z Is called a partial information set or partial data set, or simply information

set or data set. For each Z there Is a K correponding to the data Indices in Z.
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The sensors send the data Intantaneously to the nodes as soon as they are

generated. The communication among the nodes can be characterized by the

communication schedule C which is a subset of TxTxNxN. An element

(t,t',n.n') means that the communication transmitted at time t by node " Is

received at time t' by node n'.

The Information at each sensor or node In the DSN Is affected by four types

of events. The nature of the events, the times at which they occur and the nodes

affected are given below:

1. Sensor observation and transmission - IST = K x (ST }

2. Sensor data received at node -- ISR = K X (SR }

3. Transmission of communication by node -

Icr = {(n ,t ,CT) I (t ,t',n ,n')EC}

4. Reception of communication by node -

lCR = {(n.t,CR) j (t',t .n',n)EC}

Let I be defined as

I=Isr U IsR U ICT U ICR (2.3)

I constitutes all the significant events In the network and forms the set of Infor-

mation nodes (not DSN nodes) In the Information graph. To represent the rela-

tion between these nodes, we define an antisymmetric, reflexive and transitive

binary relation < on I as follows: for any i and i' In I, i< if ti' or there is a

communication path from i to i'. The information graph on the system Is then

the ordered set (I,<). By using the graph we can determine how the Information

in the system flows. In particular, it Is easy to find the history of the Information

at a certain node. As we shall see later, this Is useful for the purpose of Informa-

tion fusion.

Figure 2-3 show the Information graph for broadcast communication. At a

given time all the nodes communicate to each another so that they all have the

same Information after that. Figure 2-4 shows the Information graph for a cyclic
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communication system. The system consists of three nodes N-{ 1.2,3 } collecting

data from the three sensors S=(t,2,3}, respectively at the times .... ts.rt.T +td ......

The nodes transmit to the other nodes periodically according to the pattern

shown in Figure 2-4 at times .... 'T ,tCT +d ... and the messages are received at

the times ... t ,tCR +td.... It Is assumed that tST <tCT <tcu.

For each information node i in the Information graph, the maximum

amount of information available is the sensor data that would be received If they

had been communicated in the network. Thus associated with each node i the

(maximum) data index set K and the (maximum) information set Zj are defined

as follows:

K, = (kEK I (kST)<i} (2.4)

Z, = {(z,k)EZ I kEK,}. (2.5)

As stated before, our philosophy Is to assume that each node tries to reconstruct

the best estimate as if all sensor data are transmitted. Thus from now on the

Information available at each node i Is assumed to be Z with the data Index set

K;.

The following observations are quite obvious from the definitions:

1. K = {kEK I(k,SR)<i} for all i in 1.

2. K i CK i , if i <i'. (The information of a node always Includes that of

any predecessor node.)

3. K = U K,, for all i In I. (The Information at a node Is the union of
I '<i

that of the predecessors.)

4. K, = UKi, for all i in I, where i'Hi means that i' Is the immediate
i*-*I

predecessor of i. (One needs only to consider the Immediate predeces-

sors of i In generating the Information available to i.)
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Since there Is a one-to-one correspondence between K and Z, a similar set

of observations can be made for Z.

1. Z {ZEZ I (Z,SR) i } for all i In I.

2. Z, CZ,, If i _<.

3. Z, = U .Z, for all i in I.

4. Z = U Zi, for all i in I.
i,.-.,

Consider an information node iOEIcR. This represents the event that com-

munication from other nodes Is received. Let I be the set of immediate predeces-

sor nodes for io. The fusion problem Is to find the information state of io using

the information states of the nodes In I (and those of other predecessor nodes of

I, if necessary). As mentioned before, it is important to identify the common

Information In the data represented by I. This turns out to be

nfKi= U Ki, (2.6)

iEl i'EC(l)

where

C(1)={i'EI i'<i for all i}El (2.7)

Is the set of common predecessors for all the nodes In I. Equation (2.6) states

that the common information shared by the nodes In I is the union of the infor-

mation of the common predecessor nodes of I. In fact, based on the observation

(4) above. C(1) can be replaced by C,,,,a(J) which Is the maximum set In C(I)

with respect to the set-inclusion partial order whereby I,<I2 when I,C1 2 and

i1<12 for all i,EI, and i2 EI 2. Then the union needs to be taken only over the set

Cmax(J), I.e., equation (2.6) becomes

flK, = U K,, (2.8)
iEl i'E Cm,(j )

If necessary, we can regard Cmax(I) as I In equation (2.8) and repeat the process

to find the common Information shared by all the nodes in C,,,(I). This would

be used In the following section to develop distributed estimation algorithms.
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2.2.2 Distributed estimation

We now consider the distributed estimation problem to illustrate the use of
the information graph. Any uncertainty in the origins of the measurements is

Ignored for the time being. The results would be useful In the next subsection
when we consider distributed multitarget tracking.

The state to be estimated is a random vector z. The a priori probability

density (or distribution) is p(z). The observation generated by a sensor 8 at
time t is z (i . ). The following additional assumptions are needed:

* Both the sensor schedule K and the communication schedule C are

Independent of the state z.

* Given z and K, each element in Z is conditionally independent from each
other and has an absolutely continuous transitional probability from state

z to measurement.

The distributed estimation problem is then to compute p(z I Z,) for each iEI.

From the definition of I, this needs only to be carried out for the sets 'SR and

IcR since the only activities at the other nodes involve transmission. For an
Information node in IsR, we have a traditional Bayesian update problem where

the conditional probability is updated using the sensor report. We are primarily

Interested In a problem involving Information nodes In IcR. Suppose the Infor-

mation node of Interest Is io and that the immediate predecessors of io form the

set I. Then

Zi.= U Zi (2.9)
iEI

The objective is the computation of p (z [U Z,) in terms of the predecessor pro-
i El

babilitles p (z I Z,)i,<,. Ideally, one would like to use only the probabilities

defined on I. but as we shall see, this Is not always possible.

In the appendix, we show that

n P

P (z I U Zi) rif ( [1 p(z i nl z1 ) V (2.10)
i=1 NEN,' "EN
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where c Is a normalization constant and

N,'= {NC{I...,n} #(N)=i} (2.11)

is the set of all subsets of { ... n } with i elements. In equation (2.11). # (N)

denotes the number of elements In the set N. For n =2, this yields the fusion

formula for two nodes:

P(z I zZup)=-( 2) (2.12)
p(x I Z ,Z.)

Equation (2.11) can be Interpreted as follows. Since the probabilities p(z I Z')

and p(z I Z,) both utilize the Information contained In ZnZ ., the division by

p(z I znZ 2) Is needed to remove the common Information so that It is used only

once. Equation (2.10) Is just a general form where the probabilities from multiple

nodes are to be fused. Unfortunately, In both (2.10) and (2.12) there are still

terms Involving intersections of the Z 's. If all these Intersections are of the form

Zj for some Information node j or empty corresponding to the common a priori

Information, then equation (2.10) or (2.12) serves as a fusion algorithm. In this

algorithm, the conditional probability at the fusion node Is a product and ratio of

the conditional probabilities defined on a set of predecessor nodes. From the

definition of the Information graph, all these probabilities can be communicated.

If there Is an intersection N Z* which Is not equal to Zj, for some j'EI,
jEN

then by (2.6) the Intersection can be expressed as the union of the Information of

some Information nodes again. Equation (2.10) can then be applied to evaluate

the probability p (z i NZj). The process can be repeated until all the probabili-
i EN

ties are either condItIoned on the Information at the Individual Information nodes

or the a priori Information. For notational convenience, we represent the a priori

Information by adding an element io to the set I of all the Information nodes and

let l=IU{iO). Then the extended Information graph (I,<) Is constructed by let-

ting i be the Immediate predecessor of all the minimum nodes In the original

Information graph (I.<). Then we have Z0,-Kio: . With this definition It can

be shown In the appendix that

p(z U Z) -= C II p(T JZ7-)"' (2.13)
,( I cT

where T<1 Is a subset of I , ))7 T Is some Index tuple such that r(i) is a
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nonzero integer for each T,. and C Is the normalizing constant. The set T con-

tains all the Information nodes which are relevant to fusion at node i. a(-)

decides whether the Information at node T should be added (a(i)=1) or removed

To Illustrate the use of this algorithm, let us first consider a broadcast com-

munication pattern of Figure 2-3. For notational simplicity, we would suppress

the type of the node In naming the node. Consider the Information node (t(qj .n).

We have

[n)Z(tcv ,n )=Z(tCR -t d ,n ).(2.14)
ncN

Thus, the fusion algorithm for a node n at time tcR Is

p(x I Z(tcR.n)) = r p(X I Z(icT p)) ( I Z(t1 td,n)) (2.15)
iEN p(X I Z(tcR - td ,))

where C is a normalizing constant. Each term In the product Is the new infor-

mation contained in the sensor report z (tqr ,i).

For the cyclic communication system shown In Figure 2-4, consider node I

at time tCR. The immediate predecessors of the Information node (tcR ,i) are
(tcti) and (tcT, 2 ). Equation (2.12) can thus be used to find p(z Z(teR.I)).

From the information graph of Figure 2-4, the common predecessors of (tcT.)
and (tcT. 2) consist of the two nodes (tcr 2 td.I) and (tcr td.2). Thus

Z(tCT,)nZ(tCT,2)- Z(tCT 2td.I)UZ(t(.r td.2). (2.16)

and equation (2.12) can be used to find the probability of the right hand side

again. From the information graph,

Z(tcr 2td.i)nZ(tcT- t d, 2 )-- Z(tCr 3td,)UZ(t(.r 3t d.2) (2.17)

= Z(tcr 3td.l).

Thus, the algorithm gives for general i = 1,2,3

10)) C p(z I Z(t(!r.i)) p(X I Z(('TrT i + I]))
p(x I Z(I(.r 21d,i)) p(X I Z(t('7T td.'I I ))

Xp(Z ] Z(tIl2 :td, )) (2.18)

2-14



where i Is i modulo 3.

This is In the form of equation (2.13) with five nodes In the set T. Thus, In

addition to its current conditional probability p (z I Z (tcr,l)), and p ( Z (t(:T.,2))

which comes from node 2, node I has to store three other probabilities. Note

that p(z IZ(tcTtd.2)) is available to node 1 from earlier communications. This

Indicates that in a distributed sensor network, knowing the most recent estimate

may not be sufficient if one wants to recover the globally optimal estimate.

Our discussion above assumes the fusion algorithm for each node is pro-

vided by a system designer based on the information graph. Alternatively, we

may assume that the information graph is known to all the DSN processing nodes

who then compute the algorithms in a distributed manner. Still another possibil-

ity is for each message to contain a history of the nodes and times that It has

passed through. Then a fusion node can use the histories of the messages

received to construct a partial Information graph so that fusion can be per-

formed. This philosophy would be useful for fusion when the communication

pattern is not fixed a priori, such as when nodes can vary their communiation

strategies or have to adapt to system failures.

2.3 FUSION IN MULTITARGET TRACKING

In this section we consider the fusion algorithm for multltarget tracking

assuming arbitary communication pattern. The algorithm is based on the theory

of multitarget tracking developed under the previous project [1] and the concept

of the information graph. In the previous project [1], the information fusion in

muititarget tracking was investigated primarily for broadcast type communica-

tion pattern. In this section, we treat the same subject assuming an arbitrary

communication pattern which is defined in terms of an Information graph.
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2.3.1 Problem formulation

In Section 2.1 we introduced the fusion problem In general terms. We now

state it more formally In terms of an Information graph. Given the communica-

tion pattern of the network, an information graph Is defined. For each Informa-

tion node i in the graph, there Is a data Index set K, and an Information set or

data set Z, as defined before. Since we are now Interested in multitarget track-

Ing, we have to deal with measurement Index sets on which tracks and

hypotheses are defined. A measurement Index set J at an information node i Is

defined as

J = f{(j,k)EJ I k EK}.

The activities In a DSN can be represented by the expansion of the nodes in the

information graph. Two types of nodes, namely those In ISr and 1(-, involve

only communication. For the other two types, namely the ones In ISR and ICR,

information processing is Involved. At a node In IsR, the data received from the

local sensors are processed by each node using the GTC, producing an informa-

tion state for the node. For a node ioElcR, messages are received from other

nodes In the DSN and fusion takes place. Let I be the set of Immediate prede-

cessor nodes of i o . For any node i in 1, assume the possible tracks T(J) and the

possible hypotheses H(Jj) are known. In addition to these, the local probabilities

of the tracks and hypotheses are also given. From the Information graph, the

measurement Index set for the Information node i o Is J U J . The two specific

subproblems In Information fusion are then the following:

" (Hypothesis formation) How should node i, construct the possible (global)

track set T(J) and the possible (global) hypothesis set H(J) ?

" (Hypothesis evaluation) Suppose the global sets of tracks and hypotheses

are formed. 11ow can we evaluate the probability of each hypothesis

using the probabilities of the predecessor nodes? Also, how should the

state distributions of the tracks be computed?

The two problems would now be discussed separately.
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2.3.2 Hypothesis formation

As we discussed before In Section 2.1, not all local tracks and hypotheses

can be fused to form meaningful global tracks and hypotheses. Our philosophy

behind Information fusion is to reconstruct the Information state E(Z) starting

rrom the Information states E(Z). This means that two tracks can only be fused

If there exists a global track which Is consistent with them. This is also the Idea

behind the fusion of hypotheses. The following are some definitions needed to

formalize this concept.

Consider any two measurement Index sets J, and J2 with J2CJ,. For each

track r In T(J,) the restriction of the track r on J2 Is defined as rnfJ., I.e., the

track consisting of only those measurement Indices In J2- We usually say that

the track r is a successor of Its restriction rnJ2 or conversely, rnJ2 Is the prede-

cessor track of r. Similarly, for each hypothesis X In H(J,), the restriction of the

hypothesis X on J., Is defined to be

Xj J =--- {rfJ I rEX)\ {o} (2.19)

I.e., a hypothesis whose tracks are those of X restricted to J.. The concepts of

predecessor and successor hypotheses can be defined as In tracks.

Let (J),E, be an arbitrary tuple of measurement Index sets where I Is an

arbitrary nonempty set. I does not have to be related to the Information graph

at all. Then any tuple (ri )jEt of tracks In I-T(J) Is said to be fusable If there
iEl

exists a track r In T(.U J ) such that
iEt

rflj, = r; (2.20)

for all iEl. r is a track obtained by fusing the tracks In the tuple. Similarly any

tuple (XA)iEI of hypotheses In H-H(J) Is said to be fusable if there exists a
El

hypothesis X In H( U J,) such that
iEl

X I Ji - Xi (2.21)

for all i El. Fusabillty of tracks thus means that there exists a possible global
track such that each of the local tracks represents a restriction or the global track

to the local measurement Indices. Similarly the fusabIllty of the hypotheses
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means there exists a global hypothesis such that each local hypothesis is a restric-

tion or the global hypothesis to the local measurement index set, or more

specifically, the nonempty restrictions of the tracks in the global hypothesis are

the local hypotheses.

If the measurement index sets (Ji),i do not intersect, fusabillty of tracks

and hypotheses Is trivially assured. When the measurement index sets do over-

lap, we have to be concerned about the consistency in the tracks and hypotheses.

The following rather intuitive conditions for checking fusability are proved in the

appendix.

1. Any track tuple (r i )'iE in flT(J ) Is fusable If and only If
iEl

rfn(J, Ji,,) =- r l(Jp Ji.) (2.22)

for all (i.i 2)EJ XJ.

2. Any hypothesis tuple (X,),Et in 1lH(J) is fusable if and only if
iE1

i (Jil Ji.) = x, (Ji "Ji.) (2.23)

for all (i 1 ,i2)EI XI.

These two conditions state that a tuple of tracks (or hypotheses) Is fusable if and

only If they share common predecessors (in tracks or hypotheses) in the overlap-

ping measurement index set

"J - U{J,,nJ I (i2,i2 )EJ xI such that i13i 2} (2.24)

To check the conditions described by (2.23) or (2.24), we need to have tracks and

hypotheses defined on the set .7. In general, these are not directly available since

there may not be any Information node with 7 as its measurement index set.

However, by using the decomposition algorithm of equation (2.6), we can express

the set .7 as the union of the measurement Index sets of some predecessor nodes

in the Information graph. The two fusabillty conditions of equations (2.22) and

(2.23) can be further reduced to the following.
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Let i,0 be a communication receiving node and I be the set of all the

immediate predecessors of it. For each (ii,)El xl, let "(i,.i 2 ) be a set of Infor-

mation nodes * such that i<i, and '<i., i.e., their common predecessor nodes.

Then. we have

1. a necessary and sufficient condition for any track tuple (r, ),EIEHT(Jj
tEI

to be fusable is that, for any (i,,i,)EI X 1,

r,,rn J(--,) rnJ(T (2.25)

for any -ET(i,,i 2), and

2. a necessary condition for any hypothesis tuple (X,)i EfIH(J,) to be fus-
iEl

able is that, for any (i,,i 2)EI X 1.

, I, I J(,) - xi, I Jl-) (2.26)

for any TET(i,,i 2 ).

In general, for any two distinct nodes i, and i2 , their common predecessor

set T(i,,i 2) may not be unique. However, to use the above conditions to test the

fusability, we need only to consider the set of all the maximum elements in the

set {TEI I T<i andT<i 2}, i.e., the maximum common predecessor set. Thus In

the cyclic communication example of Figure 2-4, a track from the node (t cR ,I)

and one from the node (tcR,2) are fusable If and only If they have the same

predecessor (or restriction) tracks In both the nodes (tcr 2,1) and (tor 1.2).

The test defined by (2.25) provides a necessary and sufficient condition for

track fusablilty but equation (2.26) only provides a necessary condition for

hypothesis fusablilty. This Is due to the fact that a fusable tuple of tracks pro-

duces only one fused track but a fusable tuple of hypotheses may produce more

than one hypotheses. The counterexample In Figure 2-5 shows that (2.20) is not

a sufficient condition for the hypothesis fusablilty. In this example, the two

hypotheses (X1,X2) are to be fused. The common predecessors of the nodes I and

2 are nodes 3 and 4. It Is obvious that X1 I JI.X21 J:, and also X, I JvI-X 2 JO

thus satisfying the necessary condition of (2.26) for hypothesis fusablllty. In fact,
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'k3 =T a,b A= ITa U Td, Tb,Tc

4 1

X4= I c,d I A2 :T,TbU cT, df

Figure 2-5: Counterexample

this Is true since both X, and X2 are the results of fusing X3 and X4. However,

since

X, I J3J" 2 1 J3 fnJ, (2.27)

the hypothesis fusability condition of (2.23) is violated. This Is again obvious

since X, and X2 are mutually exclusive. X, hypothesizes that r. and rd are from

the same target whereas X2 hypothesizes that r. and rd are from different targets.

Although It Is not sufficient to determine hypothesis fusability by consider-

Ing only the predecessors of the hypotheses in the predecessor nodes, the condi-

tion (2.26) can be used to eliminate hypotheses for further consideration if they

do not have the same predecessor hypothesis In a common predecessor node.

Furthermore, the following equivalence condition, proved In the appendix, relates

hypothesis fusability to track fusablilty.
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Hypothesis Fusability Condition. Let (J,)jC be any tuple of measurement Index

sets and J= UJ.. Then, any (X)IEE-jIH(J) Is fusable with fused hypothesis
iE iEl

XEH(J) if and only if

1. for any r In X, there exists a rusable track tuple (ri)iEl( nF{o}) such
iEl

that r= Ur., and
iEl

2. for all i El and for all ri EXj, there exists a unique r in X such that r Cr.

Condition 1 states that every track r In the hypothesis X Is formed by taking the

union of the fusable tracks In the local hypotheses. Condition 2 states that every

ri belongs to a unique global track In any given global hypothesis.

Hypothesis formation thus consists of the following steps:

1. Use the necessary condition of (2.26) to reduce the candidates for fus-

able hypothesis tuples

2. Use the track fusablilty condition of (2.25) to further determine

hypothesis fusability

3. Exhaust all possible fusable hypothesis tuples, and for each fusable

hypothesis tuple, generate all possible fused hypotheses.

The last step Is concerned with the actual hypothesis formation and consists of a
two-level procedure. The first level performs hypothesis-to-hypothesis associa-

tion. The second level carries out the actual track-to-track association to form

global tracks from the fusable track tuples.
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2.3.3 Hypothesis evaluation

Given the global hypotheses and global tracks constructed from the local

hypotheses and local tracks, the objective of hypothesis evaluation Is to compute

their probabilities and state distributions using the communicated local Informa-

tion. In terms of the Information graph, the problem Is as follows. Let

i , -(1,n,CR) be a communication receiving node in I(.,, and I be the set of all

the Immediate predecessors of i0 . Let Z=UZ, with K and J be the associated
tEl

Index set and measurement Index set. We need to compute the probabilites of all

hypotheses. (P(A=X I Z))CHtJ), the state distributions of the tracks,

(Pt(X I ZJr))ET(J,, and the expected number L'(K) of undetected targets.

We make the standard assumptions on the target and sensor models (see [I]

or [21). In particular, the target models are assumed to the Independent and

Identically distributed Markov processes and the number of targets is Polsson dis-

tributed. The sensor measurements generated by sensors at different times are

conditionally Independent given the target state. In addition to these, we also

make the special assumption that the target state is either static or bidirection-

ally deterministic (which makes It equivalent to a static process). This assump-

tion is needed to make the algorithm more implementable. Later In this section,

we would briefly discuss how this assumption can be relaxed. The target state is

In a hybrid variable with a continuous part to model geolocation type variables

and a discrete part to model classification type information. For convenience, we

define a hybrid measure ut on the state space to be the direct product of a con-

tinuous measure and a discrete measure. Then any Integral with respect to this

hybrid measure Is a sum of integrals over the continuous part of the state space.

With these assumptions, the following hypothesis evaluation results are

derived In the appendix. Let (Ta) be the pair which satisfies the condition (2.13)

of Section 2.2.2. Suppose for each TI, the probability p (X IZ7 ) for each

hypothesis X in H(JT). the track state distribution px I ZT,r) for each track r In

T(JT), and $KT), the expected number of undetected targets are all known. Then

for every hypothesis XEH(J), the probability of the hypothesis being true is given

by
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P((AIJ)-XIZ)=C'HP((X \i )I Zr)'"  H L(r.(Z)rET) (2.28)

where C is a normalization constant, and

L (r,(Z) f) n I z,(T-JT))"r(a4d) (2.29)

Is the likelihood of the global track r. The expected number of undetected tar-

gets Is given by

K) L (0,(Z)TET) = (xI xZT,0)0' I4d) (2.30)

where

-i (x I ZTr)=p (z I Z-.r)L(Kr) , (2.31)

!i irfl( JT=O

ET(r) = 10 otherwise (2.32)

The state distribution of the track r can be updated by

p(z ir, z)= c' II p(z i (rnJ-), zo'-, (2.33)
'ET

where c Is a normalization constant.

We note first of all that hypothesis evaluation depends only on the statis-

tics at the Information nodes in the set T. This Is the same set used in distri-

buted estimation and represents the nodes which are relevant for fusion. The

function a determines whether the Information at a node should be added or sub-

stracted. The hypothesis evaluation formula of (2.28) has a two-level structure.

At the higher level, the product of the local hypothesis probabilities evaluates the

probability of associating the given set of local hypotheses. The next level con-

sists of the likelihoods of the Individual tracks.

Each L (r.(ZT)cT) Is a track-to-track association likelihood, i.e., the likeli-

hood of associating all the tracks In the local track tuple (rnj.l)ET with one tar-

get represented by the global track r which Is their union. Its evaluation depends

on the state distributions of the local tracks. If the tracks have similar state

descriptions then the Integrand In equation (2.29) will be large, thus resulting In a

high likelihood. On the other hand, If the local tracks have state descriptions
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which are very different, the Integrand In (2.29) will be small, resulting in a low

likelihood. In equation (2.29), the function p (z I Z-,r) is Identical to p(Z 1 ZT.T),

the state distribution for track r, when the track r has a nonempty restriction at

the node t. When this Is not the case, i.e., the track r has not been detected yet

at ', the function P Is scaled by the expected number of undetected targets and

is no longer a probability distribution. It represents some kind of density for

undetected targets.

Equation (2.30) computes the expected number of undetected targets by

fusing the local track state distributions of the undetected targets. Equation

(2.33) Is the fusion formula for the global track state distribution. Note that it

has the same form as (2.13). This is not at all surprising since given a particular

track, computing the state distribution of the target Is the usual estimation prob-

lem. Thus the fusion algorithm for distribution estimation Is an integral part of

fusion for multltarget tracking.

2.4 CONCLUSION

In this section, we have described the results of our research on information

fusion for multitarget tracking. We have identified two main problems In infor-

mation fusion assuming arbitrary communication. The first is how to generate

meaningful tracks and hypotheses starting from a set of local tracks and

hypotheses. The second is how to compute the statistics on these tracks and

hypotheses when the local quantities may contain common information due to

past communication.

We have developed an abstract model of the DSN in terms of the Informa-

tion graph. Using this graph, algorithms for Information fusion have been

developed. The two problems of hypothesis formation and evaluation all require

keeping around histories of the tracks and hypotheses In the system. Using this

history, the fusability of tracks and hypotheses can be determined. At the same

time, any common Information shared by their statistics can be Identified so that

It would not be double-counted. When specialized to broadcast communication,

we can show that the general fusion algorithms for arbitrary communication

reduce to those developed in the previous project.
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The hypothesis formation algorithms for fusion do not depend on the target

models. For hypothesis evaluation, we have assumed that the targets are static

or that their motions may be approximated by "deterministic" process models.

When the target models are assumed to be general Markov processes, the

hypothesis evaluation algorithms have the same form as In (2.28) to (2.33). How-

ever, the state of a track would have to be a trajectory sampled at various times

and computing its probability distribution would be difficult. Thus the difficulty

of extending the results to treat general Markov models is more related to Imple-

mentation Issues. On the other hand, as long as the target motion is fairly regu-

lar, the deterministic process models we have assumed may be quite adequate.
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3. TRACKING AND CLASSIFYING STRUCTURED TARGETS

This section covers our algorithm development efforts on so-called struc-

tured targets as discussed in the proposal. The treatment of dissimilar sensors Is

related to this task and Is partially discussed in this section.

3.1 INTRODUCTION

By structured targets, we may mean two different concepts In multitarget

track~ng:

(I) targets with structured states, and

(2'1 structured sets of targets.

Since each Individual target may be represented on an Individual target space,

the above concept (2) Is one-level higher than (1). In a model based on the above

concept (1). targets are still treated as Individual objects although correlation

among them can be considered and targets may be governed by a common state

as a group of targets. This kind of models is necessary, when a multilevel

ldentiflcatIon Iorocess for each target, Is used or when a, target has structure'd

features. Such Issues are related to the problem of' treating dlissimilar socrsors

which generate measurements corresponding to different levels of the strkc ired r

tac~t St al, v pm

On the other hand, the concept, (2) Is essential when targets are In fnct

organizedO and structured In Units at various level.,. A typical ex-inple cnbe

round~ in inlilitary un it~s such as army -division -~ regiment ~- bat talion - oin-

pa nvy. etc., In the naililtary hierarchy. in suich a caise, hei numbi er of t:rtget s Is

typically very large and, If they arc treated -IS Tindpendent Objects, we imNy not

hbe a ble to assess a glob~al situation based on the outpu1Jts fron t y rensonn a lY

hitnet ining ti rvel I racking systvem. This Is so because, sInve grouped I : ir, -i
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usually closely spaced, the data-tIo-data association (or scan-to-scan correlation

may become very dlfflcult with limited computational resources. This difficulty

may be overcome only when the unit structure of targets is understood and taken

into account in a tracking system. Moreover, the global assessment of all the

targets as a single structure(, object Is Itself an important task in many applica-

tions.

At least at he conceptual level, there is no dlffculty in treating targets

with structured states and dissimilar sensors In the sense that the general theory

of multitarget tracking already developed through this project provides an

integrated treatment of these subjects. Therefore, In the following subsections,

we will mostly discuss structured sets of targets. Our emphasis is the develop-

ment of a general theory upon which we may produce effective algorithms in

many different applications. This should serve also as a basis for developing dis-

tributed algorithms. Section 3.2 discusses the different and the common aspects

of the two different. concepts, (1) and (2). In Sections 3.3 and 3.4. we will present

our flrst-cuc analysis on structured sets of targets. An algorithm is derived for

two-level structured targets, i.e., tracking groups of targets. The future direction

of our algorithm development effort will be discussed in the concluding section

3.5.

3.2 STRUCTURED TARGETS

A-- mentioneo before, structured targets may connote two different. -on-

cepts, each of which is discussed in the following two subsection.

3.2.1 Targets with Structured States

A typical example of a target with a structured state space may be seen In

ain ocean surveillance problem In which target elaLsitleation is Iniruided Ili the

tracking ask. In suich a caee, each target i may be r,'l)reslu ci by state

r,' Is the contlnuous part, representing its geoloca ton at tri)utes such as posi Iion,

veloelty, etc. , ' is thc discrete component for its cissilleatlon. The spa ci for

co)nii)l) tlf|( r, Is; s rtletlire(l trinl Is t p)le'all. r.l)rvscll c(i by me:1'.ll}.s u' mli
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arborescent (tree-like) ordered set of nodes with dlifferent levels. A typlich' set (f

such levels consists u" motion group -- nationality - category - type -- class --

Identification, as Illustrated in Figure 3-1. In Figure 3-1, the classification tree is

only partially shown and there are presumably many subtrees which are not

shown. The a priori and a posteriorz probability distributions on a classifleation

tree arc those on terminal nodes. The probability of an Intermediate node n can

be defined as the sum of all the terminal nodes which are successors of n . For

any level I in the classification tree, there is a unique predecessor node given a

terminal node. Therefore it is very straightforward to treat sensors with meas-

urements at different levels. Namely each sensor observing level I nodes in the

target state tree can be characterized by two transitions, i.e.. one from a terminal

node to a node at level I and the other from a node level I to a measurement.

The first one Is always with probability one while the second can be specified by

the sensor characteristics.

Therefore there Is no theoretical difficulty to treat targets with structured

states and dissimilar sensors with measurement at different levels. In practice,

however, classification trees such as the one illustrated In Figure 3-1, may be

very complicated and the number of terminal nodes may be simply too many to

handle in a straightforward way. In such a case, we need additional tools to

effectively store and update the probability distributions on the entire terminal

nodes. In [3) and [4], a set of procedures to solve such problems is shown by

means of an example of ocean surveillance. Many of hypothesis management

procedures devised for controlling data-to-data hypotheses (e.g., those described

in !3 i and being developed in the current project) can be extended to provide use-

fu. tools, e.g., hypothlesis pruning, hypothesis combining and clustering. Further-

mon effectyiv, represent ation of prohal)ility distributions musl be developed 1r.

order for such anag:inl(,rnent systemns to work effectlively. For exaiple. track stnt,.

distributions of tracks may have different representations depending on their

status. Distributed processing on difterent levels may also be an effective pro-

cedure. For such a procedure, the theory on the distributed miulttarge, tracking

des(cribed itt earlier sec Oil s is directiy ai)plicable.

.'\s seen lit Iigtiure 3-1. In some clssill lton tres. :all Ith tertlnil nodes :ir,

the il'nt ifll ntioti (w wl)le of er ct t:arget. III other words, lt Identlill'inln o)f Ieeh

tnrl, is , , i ;ru rt :llt! n rIm tieitic ltiiilt i(i (t" ' e.iltt'rl :
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deterrmine each Identification. TDhis ;ndicates Lhat targets an r, wory fl: t

independent. from each other. For example, suppose it Is known that there are

only two lypes of targets, A and B, an(l that there are 10 type-A targets and 5

type-Il targets. Then any hypothesls indicating more than 10 type-A targets is

impossibhe and. if a hypothesis has fifteen tracks live of which are classi fled L;

Bype 1. tei remaining le:n tracks must originate from type-A targets. Ilowver.

in many cases, tracking and classification of targets can be performed quite

effectively with Independence assumptions and some external manipulation to

take care of the dependence among targets. On the other hand, If the total

number of targets of interest is small and each of them is identified a priori, the

problem formulation based on targets with a priori Identifieation. I.e., an algo-

rithm with a priori tracks and hypotheses, may be more appropriate than that

based on targets without a priori Identification.

3.2.2 Structured Sets of Targets

A typical example of a structured set of targets Is shown in Figure 3-2 in

which a division In an army Is shown in a simplified way. Depending on the type

of the division, the composition and the number of subordinates, I.e., battalions

have a certain pattern. The same kind of dependence Is also present In the rela-

tionship between the subsequently lower levels. This kind of structure produces

another dimension to the multitarget tracking problems. There are only very few

theoreticai results on tracking and classification of structured sets or targets.

Besides a few documents referred in [51, we can only refer to a couple or technical

references. [i6' and [7], both of which are concerned with two-level tracking, i.e..

trackirg of groups of targets, but treat Issues pertaining multiple groups in n

rather anhigiuous manner. On the other hand, Al (Artificial int,,lligecnce) -iypc

appro:aches were used in much more complicated environments in 181 and 9'

which are concerned with ocean surveillance ard battlefleld unil, identiflct iont

respectively 181 uses a single- hyl)othesis propagation cornbined with a

hacktracking-like recovery schene while [9] adopls a tinlil-hyp tlhesis approach.

The svst(,ms descril)ed in [8[ and [9! may he viewed as hierarchic:l systeims which

may he illustrated as In Figure 3-3. The i)roce(lurcs represetit d by tipwa rd

arrows are often called bottom- up or indurlion processes mi(dt tho se represented hy

r(mwn warr t irr ws top do tin or drt irtion, procsses.
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While the decomposition Illustrated by Figure 3-3 Is certainly a key to suc-

cessful Implementation of the systems described in [8] and [9], each hypothesis

evaluation cannot be performed independently In general. For example, In track-

Ing groups of targets, we must hypothesize possible group formation from input

data while, at the same time, the states as a group must be determined and then

the estimation of the states affects the evaluation of lower level hypotheses. Even

if the bottom-up/top-down updating is clearly defined, iterations may be neces-

sary for such processes to converge. Moreover, in some cases, a simple bottom-up

type process may easily be overwhelmed by combinatorics. Therefore, at least

for the few lower levels, we may need an integrated approach rather than a

decomposition approach taken in [81 and [9]. In the subsequent subsections, we

will try to establish a first-cut analysis which treats the whole structure of targets

In an integrated manner.

3.3 PROBLEM FORMULATION

This subsection defines a formalism for the tracking of structured sets of

targets with an arbitrary number of levels. As a first-cut analysis, we will pro-

pose a rather simplistic view.

3.3.1 A Model for Structured Sets of Targets

When we focus on each node in Figure 3-2 and Its immediate successors

rather than the whole picture, we notice the tree is composed of building blocks

each of which has the same structure. Such a building block can be identified

with a structure of a state representing a group of targets, as shown In Figure 3-

4a. In tracking and classifying a group of targets, the totality of targets can be

represented by (1) [level 1] the total number of targets plus a common target

state component for the group, and (2) [level 0] the states of individual targets.

(1) is one-level higher than (2) since (2) cannot be defined unless the number of

targets Is given by (I). This structure can be extended to the cases where multi-

pie groups of targets are present. Such a case may be represented by a tree

which may be illustrated In Figure 3-4b. Each level of nodes In Figure 3-4b

represents: (I) [level 2) the tot Al nunber of groups plus a comn mon st:i I

3-8L .



Level 1:

Level 0: 1 ....\....

Figure 3-4a: Single-Level Targets

Level 2:

Level 1:..........

Level 0: ..... . ......

F'igure 3-4b: Two-Level Targets

Figure 3-4: Single-Leyal and Two-Level Targets
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component for all the groups, (2) [level 11 the states of Individual groups Includ-

ing, for each group, the number of targets in the group and a common state com-

ponent for all the targets in the group, and (3) [level 0] the states of individual

targets in each group.

This approach can be extended to an arbitrary level l of structures. We

call such a structure a level-i target structure or simply a level-I target. As seen

in Figure 3-4, when a tree represents a level-I target structure, the nodes in the

tree can be labeled as level 0, level 1 ........ level I. There Is always only one node

at the highest level, I.e., level 1. The nodes at the lowest level, i.e., level 0.

represents the set of all the targets which we may call level-O targets. In a formal

description, we define a level-I' state for a level-I' target : as

xi"' = (Ni ' *,xj(o
v  x j, ......... ,", ) (3.1)

where N iT') Is the number of the level-U '-j) targets in the level-I' target i, xj:'

is the state component common to all the level-('-l) targets contained In level-I'

target i, and each Is the state of the j-th level-(I'-i) target. Unless '--=i

In (3.1), every z4) is defined similarly with 1' being replaced by l'-1. When

l'1l, there is no need to use index i In (3.1). Each level-I' target when 11<i is

therefore indexed as

S( ....... (3.2)

According to an alternative view of this approach, we are first given a set of

targets, then a partition of the targets into multiple groups, then a partition of

the groups Into multiple super-groups, and so forth. In other words, a level-I'

target is an element of a partition of the set of all the level-(l'-!) targets. The

partition is a trivial one when l'=l. In typical battlefield units as shown In Fig-

ure 3-5, each unit has its headquarter (division command post (DCP), regiment

headquarter (RH), battalion headquarter (BH), etc.) besides its subordinatcs (R

a regiment, B = a battalion, C = a company, etc.). These headquarters may be

considered either (1) as a part of the common state of each level-I' target or (2)

as special targets which do not have any subordinate. When we adopt the latter

consideration, we may simply extend each headquarter node to the lowest l'vel,

I.e., level 0. As mentioned before, as a first-cut analysis, we Ignore such proh-

lems. There will be no problem In rectifying the formulatIon to treat. headquar-

ters In appropriate ways In the future.
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3.3.2 Sensor Models and Multi-Level Tracks and Hypotheses

We can extend our target-sensor model for multitarget tracking from

single-level cases to multi-level cases in a rather straightforward way as follows:

Let S be a finite set of sensors which observe the targets. For each sensor s, the

measurement value space Y, in which measurements from sensor s take values is

assumed to be a hybrid space. Each output from sensor s Is a data set

(y, ....... y,.m .J .) which Is an element of

U U (Y) m X{m}Xjt0 .oo)X{s}
m 0ES

and represents m measurements, y ....... yn, generated by sensor s at time t. (t,

Is the time before which no sensor outputs any data set.) A collection of data sets

available up to a certain time is called a cumulative data set. We assume that all

the data sets are indexed by positive integers as z (1),z (2) ........ where

z (k ---((yj (k))j£ *. NM (k ). tk -Sk )J (3.3)

for each positive k such that tk <tk, whenever k <k'. A cumulative measurement

set up to k Is defined as

k

j(k)= U {...... NM(k')}X{k'} (3.4)

For the sake of simplicity, we assume that possible origins of measurements

In any data set are only level-O targets. Let Ir be the set of level-O target

indices. For each data set k, we assume an assignment function Ak defined on a

subset of the level-O target Index set Ir taking values in J(k) i ...... t (k )}.

When j =-Ak (it_,.. io), we say level-0 target (i1*-, . . . , i o) is detected by sensor

sk at time tk and generates the j-th measurement, or the j-th measurement ore-

ginates from level-O target (i . . , i0 ). With the no-split/no-merged measure-

ment assumption, such an Ak is a well-deflned one-to-one function. Then, given

a cumulative data set, we can define the trace of a level-l' target. in it In the form

of a subset of the cumulative measurement index or a collection of such subsets

at the given level. We call any possible realization of such a trace a level-I'

track. Thus a subset, of the measurement index set is a level-O track if it contains

at most one measurement Index set, for each data set.. A level-I' track is a collec-

Mlon or nonoverlapptni, lvcl-(/'--i) tracks. A leri'l-l' hypothesi, Is then a
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collection of nonoverlapping nonempty level-i' tracks and hypothesizes all the set

of measurements originating from level-I' targets. According to this definition, a

level-] track Is also a level-0 hypothesis, and vice versa, although Its Interpreta-

tion as a track is completely different from that as a hypothesis.

Multi-level hypotheses defined above may be Illustrated In Figure 3-6 in

which I -i and a level-2 hypothesis Is represented by a tree depicted by solid

lines. In Figure 3-6, the level-2 hypothesis consists of two level-2 tracks each of

which hypothesizes a group of detected groups of targets, {{r ,},{r:.r 4 }} or

{T{r-},{r6 .r-}}, where r, to r_ are level-0 tracks each of which hypothesizes a

detected level-0 target. Given such a hypothesis, we must further hypothesize

the existence of undetected targets and the overall structure, as shown in Figure

3-6 by broken lines. The process to group given level-0 tracks r, to r7 In a level-0

hypothesis Into a level-i hypothesis and then into a level-2 hypothesis can be

viewed as a bottom-up procedure. While the process to add hidden targets and to

complete the overall structure can be viewed as a top-down procedure. The

evaluation of hypotheses may not be, however, decomposed in such a manner.

The discussion of hypothesis evaluation in a general level-I case may be very

complicated. Therefore. in the following sections, we will restrict ourselves to the

cases where 1 =2, I.e., where tracking of multiple groups of targets Is concerned.

Remark: In the above discussion, we only considered the cases where each

measurement from each sensor Is based on a level-0 target. The definitions of

tracks and the hypotheses may be altered so that measurements from different

levels may be treated. At this moment, however, the exact form of the appropri-

ate modification is not very clear.

3.4 EVALUATION OF TWO-LEVEL HYPOTHESES

In this subsection, we will extend our general theory of multitarget tracking

from single-level cases to two-level cases, i.e., tracking multiple groups of targets.

The issues pertaining to implementation will be briefly discussed in terms or an

examp ie.
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3.4.1 Two-Level Multitarget Tracking

When the target structure level Is two, I.e., I =2, the overall target state

can b written as

X x (N; .xO-Z ....... XN, ; ) (3.5)

where N(; Is the total number of groups, x, Is the state component common to all

the groups, and each x, Is the i-th group's Individual state. Each xi Is therefore

In form of

z1 =( NXio.zi , ....... xN) (3.6)

where Ni is the number of (level-0) targets In group i, x o Is the state component

common to all the targets In group i, and zij Is the Individual states of the j-th

target In group i. Let the level-I target Index set be I(r-{1 ...... Nc) and the
N,.

level-O track Index set be U {i )X{ .... N;}. Then the trace of level-O target

(ij.i,)). I.e.. the io-th target In the i2-th group, In a cumulative data set up to k is

Tk(°(i.,io)- {(j ,k') 1 j --Ak,(iio),1 <k '< k } (3.7)

The trace of level-I target i a Is then

Tk(')(i,) = ( Tk(°)( ,,io) < io<N,,} (3.8)

Then a level-O hypothesis Is a possible realization of

Ak)  { (T 0k(i,.io) I Tk( 1 (i ,io)0.(i ,.i0 )er } (3.9)

and a level-i hypothesis is a possible realization of

Ak" = {Tk1)(i 1 ) 1 Tkt)(i,)#{0},i,El; } (3.10)

We can extend the concept of target-to-track hypothesis from single-level tracking

to two-level tracking as follows: A level-1 target-to-track hypothesis Is a possible

realization of a one-to-one random function from AV' to 1(; defined by

'1k")(Tks( )) = ' (3.11)

and a level-O target-to-track hypothesis Is a possible realization of a one-to-one

function from Tk''(i) to {i,.N } (given Tk''(i)) defined by
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I " "( Tk ()i' 1-i,,); TkC'( I1)) ( , 3.12)

As in the theory of single-level multitarget tracking, whenever we must distin-

guish a realization of AV" from that of 01, p), we call the former data-to-data

hypothesis.

3.4.2 General Results

We will derive a recursive formula for calculating each level-i hypothesis.

The results are an extension of the single-level tracking results. For the rest of

this section, we make the standard set of assumptions: (1) Targets are Inter-

changeable a priori. (2) The data sets are conditionally Independent given the

target states. (3) The assignment functions are totally random. The first step Is

a straightforward recursive formula

P( P (Z(k A I Z + '),A' ) hP (A I Z(k 0I) (3.13)p(z1)[ Zlk 1))k

The numerater on the RHS of (3.13) can be expanded In a way similar to that

used for the single-level tracking (as described In [I and (21) and yields

p (A > l ~ k)) P (A (1-) Z(k - 1))

P(Ak'f Z(')) = (3.14)p J( k) Z k - ))

(NG-# (A("))! P(NT; I A ",,Z'k ")
'q. +' " (Na, - (Akt')))! P

N. f, Z -)),

".-c.,,; N(;,, A,-# r)! ,, A ." L (z (k A..V ~

where

NC (N(; .N ....... ) (3.5)

and

L (z (k).AN I Z (k1) Np(k)pI)Nif (k P!
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f P((y) (k ))j k ANM (k )Z (tk )N ) 1f (NAl (k 11T kk ),z(tk .N";

P (lovT (k ) r (tk ),N ' :) P (dr(tk )I N ' .1 ?k("),Z 
k  ' ,

The updating formulae for P(dx (t ) I N ."k'j 'A") '," 1). P(N( N a.flJ',AV'Z . ,k I

and P(,IV(; I Ak.Z'k') can be derived In a similar way.

3.4.3 I.I.D.-Poisson Groups

In single-level tracking, an appropriate set of Independence assumptions

enables us to reduce a general form Into a more Implementable form. We will

repeat such a process for two-level multitarget tracking. The additional assump-

tions are as follows:

N,

III Giver, the number NG of groups, the group states tuple (zi)<l, is a sys-

tem of Independent Mar~kov processes which share common joint pro-

babliltites. Thus the state component x0 common to all the groups Is

ignored. The number N1 ; of groups has a FIsson distriloution with

mnean V,.

12) Each x, =(xin.xi, ...... ;iN), given N,, Is a stochastic process such that.
N

ix,, ) -, is a system of Interchangeable Markov processes.

(31 The detection Is target-wise Independent, i.e., the detection or target

fI t,) depends only (,,,.,) and we have

P(tlr(k) I x (tk).N" ) (3.17)

p, , . , k ((i i )(i - p , , k )) i - 0)

with a common detrction probability function Pl).

(41 Mensurement errors are also target-wks' Independent., I.e.. the valhe or
a mewasirenent, originting from i t:trt, ,)Is orre'il t i1ly 1()
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(z,,.Z,,). The number of false alarms and their values are Indepen-

dent of the targets and from data set to data set. Thus we have

P(Ntf(k) Il)T(k ).x (tk ).N') p,-V-- P (NrN(k)-# (Ii9r(k)) 1k) (3.18)

and

P((ys (k ))k, I I A k ,NM(k ),x ( tk ),NG ) (3.19)

(iII pM (yA~,,.o,.(k ) I ,0 (tk),Z(tk ),k))( I PFA(yj(k) k))(i'.io _Dom IAk ) jEJV'A (k)

with a number-of-false-alarm probability function PN,.A, a target-state-

to-measurement transition probability density function PM, and a false-

alarm-value probability density function PyA .

Under these assumptions, we can derive results which are very analogous to

those In single-level tracking (described In [11 and [2]) and are summarized as fol-

lows. (1) Given a level-1 target-to-track hypothesis, the posterior distributions of
N

the group states (z )i- ' are Independent, (2) the posterior distribution of

undetected groups becomes Poisson, and (3) the hypothesis evaluation can be

reduced to the evaluation of level-1 track-to-measurement likelihood as

P (A( Z' ) I - - I z ( eXP(Vk-Vk ) (3.20)p(Z(k)IZ(k 1 )) NM(k)(

IA 1- L(y{rIk} Z I")

where Ly, is the false alarm likelihood,

y {rI k } - {yj.(k )J (J .k CU} (3.'21

Is the set of measurements assigned to level-I track r and L(I Z Is the

level-I track-to-measurement likelihood. The forms of the above likelIhood func-

tions are very similar to that of the hypothesis ev:dualion formula for the single-

level tracking of dependent targets.
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3.4.4 An Example

A straight forward extension of single-level tracking to two-level tracking is

possible using the results shown in the previous two subsections. In two-level

tracking, however, the combinatorial problem Is even more severe, which may

make a straightforward extension of single-level trackers Infeasible in many appli-

cations. For this reason, we may have to develop new techniques for overcoming
the additional combinatorial burden Inherent to two-level tracking. In this sub-

section. we will discuss this aspect of the problem in terms of a simple example.

We consider tracking of groups of ground vehicles moving on a road net-

work. By a two-step transformations to take care of (1) the route selection by

each group and (2) the curvature of each road segment, the problem can be

reduced to that of tracking groups of targets moving on a straight line. Let u, be

the 1-dimensional position of the lead vehicle of the i-th group and vi be Its velo-

city. Then the position and the velocity of the j-th vehicle In group t can be

modeled as

uij = Ui - (j-)c i vi + Cj (3.22)

and

vi= vi + r1hi  (3.23)

where e, vi is the expected distance between two vehicles in group i. ,j and tl,j

represent randomness In position and velocity of each vehicle in the group. We

assume that the randomness can be modeled by independent gaussian random

variables. The group dynamics are then assumed to be a simple almost constant

velocity model with an appropriate white gaussian driving noise. Thus we may

have a very simple target model in which the state component common to all the

targets in group i is

i, (u, ,v2 , a,.) (3.2.1)

where a, Is a discrete variable representing the type of group i. The Individual

target state of the j-th target In group t Is then simply its type a,1 .
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For each possible type of group, we assume that we have a sufficient

number of templates of the group including composition of different types of vehi-

cles and their order when moving on the road. Each template can be represented

by

e = (a,N~b ...... bN ) (3.25)

where a Is the type of a group, N is the number of vehicles In the group and b,

is the type of the i-th vehicle in the group. Therefore the level-I track distribu-

tion, i.e.. the group state distribution, is a distribution on (-oo.oo)2 XE, where E

is the set of all the templates. In general, we may assume at least in an approxi-

mated sense the independence of motion from the type component as

P (dudv,de )=P (du,dv )P (de).

When a data set is received from a sensor, each group hypothesis is given a

set of measurements which may be associated to it. Then the set of measure-

ments is ordered linearly and, for each template, the level-I track-to-

measurement likelihood Is calculated after template-to-measurement matching as

shown in Figure 3-7. In such a process, we must use a very effective method for

determining a likely level-I track-to-measurement assignment. For example, for

each template, we first estimate the most probable distance between targets

based on the velocity estimate and then spread the vehicles in the template

accordingly. Then, by an effective assignment algorithm, we can find a feasible

assignment between the given set of measurements and the vehicles In the tem-

plate. After determining the assingment, we can calculate the level-I track-to-

measurement likelihood.

3.4.5 Distributed Hypothesis Formation and Evaluation

As snown earlier in this report, distributed hypothesis formation is a pro-

cess of creating a logically consistent set of hypotheses from a collection of local

sets of hypotheses. This process amounts to the consistency checking on the

overlapped pieces of information in the past. It Is also determined purely by the

definitions of tracks and hypotheses and Independent of their probabIllstlc

nature. Therefore It, is expected that we may extend the single-level tracking

results to the two-level or In general level-I tracking va.ses. The results may he a
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similar type of consistency checking on the predecessors of tracks and hypotheses.

However, although the final results are fairly simple in single-level tracking cases,

complicated steps were necessary to derive Implementable results. It Is hence

expected that the logical arguments involved In two-level tracks and hypotheses

may well be very complicated.

On the other hand, distributed hypothesis evaluation Involves the distri-

buted estimation and is highly dependent on the structure of the global

hypothesis evaluation formula. In the single-level tracking cases (with the i.i.d.

Poisson assumption), as shown In the appendix, the hypothesis evaluation equa-

tion is. in essence, a product of track likelihoods and each track likelihood is an

integration of a product of state-to-measurement transition probability densities.

Thus each track likelihood can be decomposed using distributed estimation

theory. In two-level tracking cases, however, the level-I track-to-measurement

likelihood involves summation over many possible numbers of targets in each

group, which may cause difficulty In decomposing the track likelihood into the

Independent components. We may well need a kind of aggregation of tracks and

hypotheses in order to produce a workable algorithm for distributed hypothesis

evaluation for the two-level tracking. The dynamic behavior of groups may also

complicate the discussions.

3.5 CONCLUSION

A first-cut analysis on multitarget tracking concerning structured targets

were discussed in this section. The discussions In this section are summarized as

follows: (1) The treatment of targets with structured state spaces is at least

theoretically straightforward. (2) The treatment of such targets in practice may,

however, need several additional consideration and more aggressive hypothesis

management strategies. (3) The same arguments as in (1) and (2) are also valid

when dissimilar sensors with measurements at different levels are concerned. (4)

Structured sets of targets may be treated In an integrated form and concepts of

tracks and hypotheses can be extended from the single-level cases in a straight-

forward way. (5) Twc>-level mwltitarget tracking hypothesis evaluation can be

done by extending the slngle-}evel tracking results. (0) Practical methods for

Ifn )l('meI InI g two-level hypot hiisis eval at Ion needs howev(,r furt her
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Investigation. (7) Distributed hypothesis formation and evaluation for two-level

tracks and hypotheses may be possible by extending the single-level results but

we need more time to clear this problem. The future efforts pertaining to the

topics covered in this section may Include: (1) effective implementation of single-

level tracking with correlation among targets, (2) Implementation of two-level

multitarget tracking algorithms, and (3) development of distributed level-i

hypothesis formation/evaluation algorithms.
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4. TOWARD A DSN DESIGN TESTBED

In this section we describe an architecture for a general testbed environ-

ment within which a DSN sytem may be designed, prototyped, and its perfor-

mance capabilities tested on a simulation of the task domain. The major aspects

of this architecture, called Schemer, have been implemented and used for the

development of distributed systems similar to that of a DSN [1]. Judging from

the success we have had with early versions of Schemer for distributed system

development support we believe that a complete Schemer system can provide a

development environment within which the structure of a DSN system can be

evolved and the performance abilities of alternative techniques for sensor and

other forms of information processing (such as the Bayesian tracking and

classification algorithm being Investigated In this project) can be "empirically"

evaluated. Moreover, since Schemer is an extension of techniques for Al expert

system construction, it also provides direct support for augmenting non-Al

approaches to signal processing, information fusion (both signal and message

level), resource allocation, control, etc. by combining these non-AI alogorithms

with powerful Al heuristic methods for problem solving, planning, and other

forms of Intelligent reasoning.

Before going Into details, let us give an overview of some of the important

assumptions and concepts that underlie the approach being taken with Schemer.

The Schemer based approach to be described In more detail below capitalizes on

the notion that a distributed system like a DSN may be viewed as a kind of( dIs-

tributed decision making (DDM) system. That is, each node (an individual pro-

cessing element) in a DSN system may be viewed as a more or less independent

"decision maker" reaching conclusions on the basis of its own privately acquired

Information and Infornuatlon shared with other nodes In the overall sysviem. This

"cognitive' top level view Is consistent with other work we have dlone using S('he-

mer as the basis of a distributed system model [11]. In general then the Schemter

system must provide a context within which to nlodel all the following :aspects of

I)SN system structulre and funltion, is well as the targt task domrA n:
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1. The event. stream of the task domain to which the overall system Is

exposed, and the part of that overall event space to which each node in

the distributed system will be individually exposed;

2. The structural relations that obtain among the nodes of the DSN sys-

tem. including the communication relations among the nodes and the

authority or control relations among these same nodes; and

3. The performance and decision making abilities of each node;

4. The criteria according to which system performance should be judged,

including speciflcation of the global "goals" and task requirements of the

DSN system and other performance criteria that constrain how these

global goals should be met.

More should be said about the metaphor of each DSN node as a participat-

ing decision maker In the overall distributed system. The technology of AI

Expert System (AlIES) construction has evolved precisely in response to the

need to provide computational models that incorporate expertise for performance

and decision making In some task domain. In this sense each node of the DSN

system can be thought of as a participating ES armed with its own local expertise

for carrying out its particular functions in the network and for cooperating with

other nodes with which this node can be In contact. Furthermore, this viewpoint

exposes the Importance of the Idea that we should where possible Incorporate

available human expertise In the capabilities of a DSN node to augment other

non-Al methods like GTC. Thus, the metaphor of a DSN as a network of deci-

sion making participants leads to the view of a DSN as a cooperative distributed

expert system.

The central principles of the Schemer design to be presented below derive

from the need to provide a testbed environment it which to explc)re ncw

approaches to the design of knowledge based Expert Systems (i'Ss). The various

alternative ES architectures that have been developed by the A[ community pro-

vide suitable computational models of human expertise for performance and deci-

slon making in a wide range of domains 12]. Schemer therefore is intended to

provide a framework for constructing a system out of somne comt) ll, lolln of t1hese

Al architectural techniques In Combination with non-Al eapabilithes. 'urther-

more, the basic Schemer framework has been d('velol)('d withi an eye t owar(d con-

strucjtlon of di.strib rid h'.rpcrt Sy,.,cm rictu'ork.s.
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In the following discussion we will briefly sketch the requirements on

testbed design, and then present our Ideas for an architecture Intended to meet

these requirements. As noted above, this architecture can be viewed as a kind of

framework for designing and protoyping distributed, cooperative expert systems

that can be configured for a wide range of application domains.

4.1 REQUIREMENTS FOR A DESIGN TESTBED

The primary categories of activities that require support are DSN system

design development, rapid prototyping of the DSN design, and prototype evalua-

tion. Let us briefly review these activities and the requirements that each

imposes on a system intended to support a designer engaged In each of them.

The support of design development involves two principal issues. One of

these is support for specifying some candidate design for the DSN system. The

other is the specification of the tasks to be performed by the DSN system and its

constituent elements and a task environment in which the system will operate.

As noted above, we view the problem of specifying a DSN system design as

essentially the same as that of constructing a model of a distributed expert sys-

tem. To review this claim, the designer models the Individual elements or partl-

cipants In the DSN network by defining each as a particular expert system struc-

ture. Thus, each expert system Is constructed to "model" the decision making

and other capabilities that a DSN node must be able to provide in response to

specific task conditions that may arise as the entire system. performs its overall

activities. The designer's specifications for the capabilities required of an element

are modeled as the expertise of the expert system representing that DSN element.

In addition to modeling the elements of the system, the designer must also

model the relationships that obtain among these elements. The principal types of

relations among system elements that must be modeled are the communication

relations and the control (i.e., authority) relations that exist among nodes. There

are various approaches being developed by the Al community for modeling com-

munication and control relations in a distributed syslem of (potentially)
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Intelligent agents. In other work completed at AIMDS f10J, we have reviewed

some of the major Issues that must be addressed in dealing with these problems

of distributed system communication and control. Schemer's distributed AI/ES

approach Is, prima facie, an excellent path modelling such applications such as a

DSN. However, we note as we did earlier that the modeling capablitles of a

design support environment should also support the modeling or other "unintelli-

gent" types of system elements (e.g., a remote sensor or senor system).

The task context In which the DSN system operates must be modeled if the

designer Is to explicitly consider the relationship between candidate design and

that task context. In order to support the DSN system designer In specifying the

task requirements and task environment the DSN design testbed must contain

tools for modeling the objects and events to be encountered by the DSN system

as it performs its tasks, and also descriptions of the performance expected of the

DSN system itself. The design testbed must provide a means of expressing

scenarios and event streams that can be fed to the DSN system model for simula-

tion, the next major capability to be provided In the design testbed.

Therefore, using the expert system model of a DSN system for simulation is

the approach we propose for prototyping a candidate design. Furthermore, in

order to promote rapid prototyping, It Is desirable to allow the designer to con-

duct simulations while aspects of the total system design are incompletely or

generically specified. This approach to the prototyping task requires a testbed

environment which contains methods for using the models of the tpsk context

and the system Itself to simulate the performance of the Intended system. More-

over, It should be possible to abstractly or generically specify subsystems of the

complete system and still perform at least limited simulations of system perfor-

mance.

The final major aspect of our design methodology has to do with the prob-

lem of design evaluation. Designs for systems of the complexity of I)SN systems

do not readily yield to analytical methods. Thus, a primary value In providing

the kind of simulation and rapid prototyping capability just discussed is so that.

methods for empirical analysis can be used where analytical approaches to design

evaluation are not available. Furthermore, It Is Intended that these observational

techniques be used as early as )ossible In the design development process to

4-4



promote rapid convergence on a satisfactory design. The Implication of these

remarks Is that the design methodology we seek to Instantiate should provide a

mixed approach Including analytic verificational techniques for those types of sys-

tem and subsystem designs that admit such analyses, and observation based

methods of evaluation for designs sufficiently complex that no known analytical

evaluation method applies.

We can now look at the specific Schemer architecture as an approach to the

construction of a DSN design testbed that meets the design support requirements

just reviewed. In the next section we will present the general approach to

knowledge representation provided In Schemer to handle both DSN system and

task context modeling. Following that discussion we will present a description of

the design of the Schemer testbed architecture and consider the kinds of tools

needed to construct a DSN protoptype, run simulations with It, and evaluate Its

performance In terms of task specifications.

4.2 KNOWLEDGE REPRESENTATION IN THE DESIGN TESTBED

Our discussion of knowledge representation will proceed In parallel with the

discussion of testbed requirements above. First, let us consider an approach to

modeling a single DSN node. This will first focus on how a designer may

represent the knowledge held by a node that allows It to perform Its function.

This will also require that we show how this node Is controlled In some general

framework. To this end we will next present a generic expert system architecture

within which the capabilities of a specific DSN component. may be modeled.

Finally, we will look at the relationships among nodes specifically considering

how communications and authority relations among nodes can be expressed.

After considering how to represent an Individual node, we will then discuss

how the task environment may be represented In the design testbed. As we will

see, the representational requirements for this aspect of modeling will largely be

another application of the techniques (hat we have developed for representing the

Individual DSN system nodes' internal structure.
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We will defer discussion of design tools and their representation until after

we have looked at the overall architecture of the design testbed. This we will do

In the next section.

4.2.1 Node representation in a DSN system

We begin now by discussing our approach to modeling a node. Consider

first the knowledge that may be held by a node. We need to consider the follow-

Ing four categories:

a. Static (i.e., relatively permanent) knowledge;

b. Situational (current context) knowledge;

c. Planning knowledge; and

d. Control knowledge.

4.2.1.1 Static knowledge

Static knowledge refers to the relatively unchanging knowledge that a node

has of the objects and events in the task domain. This will include other nodes

in the DSN system as well as objects external to the system. In this project and

in previous research and development efforts at AI&DS, we have considered some

of the basic issues that are involved in representing the types of knowledge that

must be held by a node. The design conclusion that we have reached on the

basis of this analysis is simple to state. We have determined that an expanded

frame representation language [13] is best suited to provide the representational

power and flexibility needed for modeling the static knowledge of a DSN node.

(In fact our use of a frame representation is even more pervasive, but we hold

further elaboration of this point until later.)
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A node's knowledge of a type of object (e.g., a particular type of missile) Is

represented as a structured combination of attributes and, optionally, restrictions

on the values of those attributes that may be held by an instance of that object

type. Figure 4-1 exemplifies this types of representation. In the figure we see

that the object category "Backfirebomber" is Identified In terms of specific attri-

butes such as wingspan, top speed. etc. Each of these attributes is likely to have

a specific value or a range of values (expressed as a construct known as a "con-

straint") which must be satisfied for any object to count as an Instance of that

class. It Is also possible that the value of an attribute can be a complex struc-

ture. For example, certain types of aircraft are distinguishable In terms of their

tall assembly configuration. Thus, the frame representation could contain an

attribute called "Tallconfiguration" which Is itself another frame description

whose attributes are the components of the tall assembly, their descriptors, and

the relationships among these components.

Another Important aspect of a frame representation such as the type we are

considering here has to do with the notion of "inheritance". This refers to tile

way that the Information described In one frame may be accessed as part of the

description available In another related frame. The frame description of the

figure has an attribute called "Aklnd.pf" that relates this frame to another,

more general, frame for the more general class bombers. In that latter frame

there are contained a number of descriptors such as "Bomb payload: greater than

0" which serve to more generically define the features of that class. In Figure 4-1

that attribute has been "Inherited" and has been given a more specific restriction.

Thus, the attributes of a frame description determine the descriptive pro-

pertles of a particular class, and additionally can specify the relationship of that

class to other classes. These Interclass relationships provide the basis for using

the knowledge represented In one frame to augment the definition/description

provided by another frame.

In addition to representing objects such as aircraft., sensors, ships. etc., tile

representation language must also depict a node's knowledge of events. In order

to do this we have borrowed some i(eas from the work of Schank and Abrlsoi

[1,1 and combined them with our frame based approach. In particular, an event

Is represented as a frame in which the d's('ripthlye attrihut,,s of th(' event (if th,re
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FRAME: Backfire-bomber

A kind-of: Bomber

Top speed:-- - - - - - -

Cruising speed: --------

Length:-- - - - - - -

Bomb-payload: -- ------

Range:-- - - - - - -

etc.

Figuire 4-1: A Frame Representation E~xample'
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are any) are represented in the attribute value notation just. discussed. In addi-

tion, the event frame also depicts a sort of "script" that portrays a set of simpler

events that comprise the structure of this event. The sequencing relation among

the component event such as sequential ordering, parallel occurence, conditional

occurence. etc. are expressed In our representation system by use of a set of

primitives called a "strategy representation language" (SRL).

Figure 4-2 Is a simplified example of an event representation. Note that in

the script for the event, exemplified reference is made to other event representa-

tions called "sensor_not_detecting" and "sensordetecting_object". These two

component events are themselves composites that are described in terms of sim-

ple events, and so on until a set of basic "primitive events" are reached in various

event representations. This provides another kind of relationship among

representations, namely that one event representation can provide a "high level"

description of the flow of an event and yet the system can break this high level

description down into a more detailed description by tracing the subevent

descriptions. The notation "SEQ" In the figure is the relational operator from

our SRL which represents that the component events occur one after the other.

The constraint Indicates that there is no overlap. Finally, we note that the

representation of time is based on time intervals rather than point. The notation

"NIL" in an interval representation means that a value need not be specified in

an instance. (The notion of a time Interval assumes that the first point does not

follow the second.)

The approach to a representation of objects and events just sketched is a

potentially quite powerful one. It, borrows many of Its ideas from earlier work in

Al on knowledge representation with specific modifications and extensions that

we have adopted to meet the needs of our distributed system applications.

There is yet another type of knowledge that must be represented in a node,

and that is properly considered part of the node's static knowledge. We refer to

the procedural knowledge held by that node. That is, in id(lition to knowledge

in the form of descriptions of the objects and events that comprlse. the node's

understanding of the tsk domain, the node must also have "skills". In the

manner that is common to most work on expert systems, we reI)resent these skills

as kvnowledg( In the form ofr sittlon-e tlon ntltl(es we wIII '' k liowledge
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EVENT: New sensor detection

A kind of: Observation
Components: Set-of:

Observations device: Sensor
Observor: Node

Script:
Subevents: Get of:

Sub event 1:

d-escription: sensornot-detecting

time interval (NIL, TI);
Sub event 2:

description: sensor detectingobject

time-interval: (T2, NIL)
Scriptprogram:

Sub event _ SEQ Sub event 2
Constraints:

TI C T2

Figure 4-2: An ,vent Representation Exanmple
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sources" (KSs). More specifically, a KS Is a representation of some action that Is

to be taken by the node as a response to the occurence of a particular condition,

that we will call the "trigger condition" for the KS. There are a wide variety of

ways to represent such situation-action entitles. For now the reader may think

of a KS as a kind of "if-then" rule In which the trigger condition Is the "If part"

of the rule and the action Is specified by the "then part" of the rule. (We will

modify this oversimplified presentation in a moment.)

Thus, a node's procedural knowledge, represented as these KSs, represents

that node's ability to take actions In the domain and to solve problems or make

decisions. The abilities of a DSN system node to participate in performing opera-

tions on the system's task will be modeled by the KSs held by that node. This

Includes the knowledge that thee node has for reacting to inputs from other sys-

tem elements such as sensors, for using new and old Information to make deci-

sions. to combine information from various sources and pass a composite descrip-

tion along to yet other system elements, etc.

Figure 4-3 exemplifies more accurately the design of a KS. Note that this

representation Is also a frame description. However, there are certain attributes

In this frame description whose value are so-called "attached proceures". In a

KS, these attached procedures are executable code that embodies the actions that

the KS will take when executed. Let us discuss a little more carefully the struc-

ture of the KS representation and how a KS is executed.

Recall from our earlier discussion that the basic notion a KS embodies is

that of a "situation-action" rule. The KS represents some action that is to be

undertaken under the condition that a particular condition or situation is true.

The situation Is represented by some pattern (I.e., frame description), or combi-

nation of patterns, In the system's knowledge base. The trigger of the KS

describes this pattern. If the trigger pattern Is ever asserted in the system's

knowledge base, then the appropriate code Is handed to the node's top level

interpreter for execution. This code is the part of the "action" attribute called

"code".

There is one more detail to discuss regarding the execution of a KS. There

Is an attribute In the KS frame called the "precondition" which affects whether or
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KNOWLEDGE SOURCE NAME:

Priority:

Trigger:

Precondition:

Action:

Description:

Code:

Failure act:

Description:

Code:

Knowledgespace:

Figure 4-3: Structure ror a Simple Knowledge Source
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not a KS action is ever executed even though it has been triggered. Specifically,

when a KS is ready to be executed by the top level Interpreter, the precondition

is checked. If It is not true then the code that Is executed Is that contained In

the "failure act" attribute. This code can represent a range of capabilitites such

as test for data needed by the KS to perform Its actions, checks to see whether

other KS actions that are prerequisite to this KS's actions have been performed,

specification of how to suspend the call to execute this KS action and (optionally)

how and when to resume It later, etc. We have heretofore been Informally

describing the KS as a kind of "if-then" rule. With the addition of the precondi-

tion and the precondition failure-act the more proper description of a KS Is as an

"if-then-else" type of rule.

There are some additonal features of a KS that need to be discussed. First,

both the "action" and the "failure-act" attributes of a KS contain another entry

besides the code. This entry is called a "description". It Is Important to under-

stand that the code entry for an "action" or "failure act" Is Intended to be exe-

cutable code. In order for the node to "know" about what a particular KS does,

some symbolic description must be provided that can be Interpreted. For exam-

pie, suppose that the node has established a goal to accomplish some action.

Then that node must be able to examine Its KSs to see If the actions described

by any of them accomplish the desired goal. Some goal seeking KS must read

the descriptions of other KSs until one (or some combination) Is found that

describe actions that achieve the goal. Suppose that some such KS Is found

whose action description matches the goal. Then the next step in goal seeking is

to try to ensure that the trigger and precondition patterns for that KS are

asserted. Therefore, these trigger and precondition patterns now become

subgoals: if they can be asserted then a chain of actions that lead to the goal can

be executed. This exemplifies how goal directed inference is achievable by a node

due to the descriptive component of a KS.

Note next the slot called "knowledgespace" in the KS frame. This is

intended to model the need that certain procedural elements have for s:ing

Information between executions. For example. suppose that a KS is intended to

be a counter which keeps track of the number of occurences of some event and

reports when some number of occurenees has taken place. One way to represent.

this Is wvith a KS t.h a Is triggered by cciiren'c's of tlt:i ee'Vit in(I which
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increments a local datum and then "goes to sleep" until triggered again. When

the KS Internal count reaches the requisite number on some activation the report

will be made.

The local data space attribute or a KS thus allows it to keep local state

Information. Actually, the design we have chosen also provides for separate KSs

to share portions of their knowledge-space with each other (but without making

this data globally accessible). This provides a fundamental way that procedural

elements can communicate state Information with each ther. There are other

advantages to allowing a KS to have a local data space. However, we will defer

discussing these for a few moments.

The final KS attribute to mention Is the "priority". This Is Intended to be

a very low resolution representation of the Importance that this KS has when It is

triggered in comparison with the other KSs In the system. As we shall see when

we discuss the top level control structure for a node, this priority Is really

intended to be used as only a very rough estimate of urgency. The actual way

that the node orders triggered KSs for execution relies on other mechanisms that

can operate In a more context specific way.

We have not yet mentioned one very Important aspect of the KS represen-

tation used In our system. We have restricted the discussion of a KS action to

being a single piece of code that Is directly executed when the KS Is triggered. It

is also possible for a KS to be a representation of a composite action by making

use of the local knowledge-space In a KS and the script language we discussed In

our consideration of event representations. In the case of a composite KS, the

code (for either the action or the failure-act) can be a simple action that executes

an entire group of actions In some order. The representation of these actions Is

located In the KS's knowledge space. These actions are organized in a control

structure in terms of the strategy representation language (SRL) discussed earlier.

Thus, the code acts like a local Interpreter of a script for composite action.

Let us summarize the basic features of a KS as a model of procedural

knowledge. It Is an If-then-else construct which provides for Important. capabili-

ties such as synchronization, type checking, etc. to be experssed. It, provides for

event directed execution by Its trigger-action b'a.ic stricture, and for goal

4-14



directed execution by having descript ions of the outcome of its execution. This

type of model for a procedural clement In a system gives generality to the kinds

of Inference that a system can do using this KS structure as the format for

expressing its procediral knowledge. Finally, the KS provides for local data

storage so that both computational and data state can be saved between execu-

tions. One very important way that this local data space construct is used Is In

the representation of composite KS actions. In this case the script for a compo-

site action is found in the KS's knowledge-space and the code is an Interpreter

that executes this script. Thus, the KS model we have chosen is also sufficiently

general to represent very powerful computational constructs such as object-

oriented code [151.

We have now discussed the basic concepts used in the design of a node for

representing static knowledge. Let us summarize this discussion. A node's static

knowledge is represented in a frame description language that portrays a concept

as a structured representation of attributes and the values or ranges of values

that each attribute may have in any instance of the concept. In addition, events

are represented as frames which contain a script depicting the ordering of simpler

events in addition to the descriptive attribtes of the event representation.

Finally. KSs are represented as frames with attached code that may be executed

to enact the procedural knowledge that the KS represents. KSs may be simple,

meaning that the action to be carried out is one uninterruptable activity, or they

may be composite. In a composite KS the code is a (usually trivial) interpreter

that. executes a set of actions described in the KS's local knowledgespace by a

script.

4.2.1.2 Situational knowledge

Now we should consider the node's representation of situational knowledge.

This type of knowledge refers to the node's hypotheses regarding the existence of

objects, events, constraints, goals to be met, etc. in tie task ('uiotext.. On e tecC(h-

ni(que we iave devised for represeinIIng such hyl)othCes Is dcl('ted in Figu re i-I.

In that figure one n ay see that each hytpoth('sls Is represented as sot e pi: i-

tern of underlyIng assertlonls or o)srv:uitloris. one may thinrk of this :,s s
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CONTEXT
C

I (HYPOTHEStS-1)

e(EVENT-I) e ee

EXAMPLE EXAMPLE

HYPOTHESIS EVENTS

li: 2 TARGETS DETECTED el: OBSERVATIONS IN SET

A FROM SAME TARGET

e2: OBSERVATIONS IN SET

8 FROM SAME TARGET

Figure 4-4. Formnat. ror Ilypotthcsis Representat ion



represetation In which the hypothesis Is a claim that some compound event has

occured (or Is occuring). and the underlying observatons are the evidence that

supports the hypothesis. The Individual pieces of evidence may simultaneously

support more than one hyothesls. Each piece of evidence can have some value

attached to it that represents the plausibility of that piece of evidence, and tile

association of a piece of evidence to the hypothesis Is weighted. The plausibility

of the overall hypothesis is a function of the plausibilities of the supporting evi-

dence modulo the weight of association for each piece. Finally, hypotheses are

organized in clusters that represent mutually competing hypotheses for Interpret-

ing a set of observations or other assertions. In this way groups of hypotheses

that represent conjectures about unrelated sets of data are partitioned from each

other so as to simplify the process of hypothesis management. The techniques of

hypothesis representation and management have been discussed In the report [Il.

Figure 4-5 outlines the essentia' notions that enter Into the process of

hypothesis management. For the most part the notions presented there are quite

obvious. However, there are actually a number of alternative methods for accom-

plishing many of these functions. For example, the task of propagating the plau-

sibility of supporting evidence to the plausibility of the hypothesis that It sup-

ports may be handled in a variety of ways (e.g., using a Bayesian approach,

Dempster-Schaffer theory, fuzzy logic, etc.). In turn, the pruning rule for elim-

inating hypostheses when their plausibility falls too low may be one of a large

number of alternatives. We have not yet determined which, if any, of the alter-

native computational theories for combining evidence is the best; however, the

representational calculus exemplified In figure 4-4 provides a structure within

which any of these il-.ernaives can be applied.

4.2.1.3 Planning knowledge

'll( next Issue to be discussed in the representation of a I)SN system node's

knowledge has to do with the potential need for a node to engage In planning,

such as resource allocation, adaption, etc. Although It will not he a requirenent.

for all no(es to have planning ability, we nevertheless must I)rovide this capap)iil-

Itly if we are to use one general model of a DSN system element as a tem plate

with which to model the various Individual systen elements, som,' of whieh will

4-17



HYPOTHESIS MANAGEMENT

I PRUNING

- ELIMINATING LOW CONFIDENCE HYPOTHESES

- SETTING ADAPTIVE THRESHOLDS

* COMBINING

-REPLACING SIMILAR HYPOTHESES BY ONE

HYPOTHESIS

* CLUSTERING

- PARTITIONING HYPOTHESIS SPACE

- NO POSSIBLE CROSS ASSOCIATIONS

* RECOVERING

- ELIMINATE HYPOTHESES GENERATED BY

NOISE

Figure 4-5: llypothesls Managemcnt Actions
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indeed be capable of planning.

Actually, the planning capability of a node Is representable in terms of

three constructs that we have already introduced. The first of these is the

representation of events, which a node may use to represent goals that are to be

achieved. The second Is the SRL used to describe the ordering of activity In

composite events and In composite actions. These two devices provide the means

to a node to represent plans for a series of actions to achieve goals. The third

mechanism is to provide a node with a specific set of "planning" KSs. These KSs

will include KSs to post goals to be achieved, KSs to divide goals into groups of

subgoals, KSs to construct action scripts to achieve goals or subgoals, KSs to exe-

cute a plan once constructed, KSs to monitor plan execution so as to provide for

replanning capability when conditions that were part of the assumptions of a

plan have changed, etc.

4.2.1.4 Control knowledge

The last major type of knowledge that we promised to discuss is so-called

control knowledge. This refers to the knowledge that the node has for how to

organize the actions that It must undertake. If we are to model nodes In a DSN

system that are Intelligent we must provide for a control structure that is flexible

and context sensitive. Thus, In addition to providing KSs in a node model that

can carry out actions In the task domain, we also need to provide the node with

KSs that can resolve conflicts If more than one KS Is relevant to a situation and

KSs that are able to alter the queue of pending actions that that node must exe-

cute In response to a sudden change of conditions. The approach we take to this

is to apply the planning capability just discussed to the control of the node own

computational processes. Thus, our approach to control Is to view It as a plan-

ning and problem solving domain for which we supply a set of control KSs that,

are triggered by the structure of actions that are pending and that are ongoing In

that node. This approach Is an alternative to providing a single complex control

structure at the top level In a node.
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Of course, the topic of control raises the Issue of the general framework for

top level control that Is to be provided for a DSN node representation. Figure 4-6

depicts this framework. The general structure of the architecture is divided into

the two components of the CONTROLLER and the BLACKIOARD. This archi-

tecture is an intellectual descendant of the type of expert system known as a

blackboard architecture [161. In representing a DSN node In this way, the

entirety of the node's knowledge is stored on that node's blackboard. As Is

shown In the figure, this includes an area for the static knowledge held by the

node as well as an area for the node's hypotheses. Specifically, the blackboard

contains the representations of the node's KSs that represent the actions that

that node is able to perform. Finally, there Is an area (shown at the top of the

blackboard) that represents the node's notation about its current state of execu-

tion, called the AGENDA SPACE. In this latter area Is a representation, called

the AGENDA, of the set of KSs that have already been triggered but have not

yet been executed by the CONTROLLER. There Is also In this space a HIS-

TORY structure which Is a kind of audit trail of KSs executions that have

already occured.

The other major component of the framework Is the CONTROLLER. This

is the algorithm that controls the general execution of the node model. It is

divided Into four stages. These are the INTERPRETER, the BLACKBOARD

MANAGER. the EVENT DETECTOR, and the PRIORITIZER. The basic loop

repeated by this CONTROLLER Is essentially the following.

First, it Is the responsibility of the INTERPRETER to select the first KS

on the agenda, check the KS precondition, and execute the action or the failure

action for that KS. Then the I3LACKBOAR) MANAGER filters the output of

the code run by the INTERPRETER and posts any changes to thc I3,ACN-

BOARD that have been created. Next the EVENT DETECTOR checks the con-

tents of the blackboard to see If there Is a pattern of assertions which match the

trigger pattern for any KS. The list of KSs that are triggered are passed up to

the PIIOI{ITIZER which Inserts the newly triggered KSs into the remaining

AGENI)A, ordering them on the basis of their priority. The Ks that. was at the

front of the list of the AGENI)A Is removed and Is added to the

IlISTORYIjIST. Then the cycle Is repeated again.
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Figure 4-6: Architecture for a 1)SN Node
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There are a number of efliclencles that we have Included In the actual

design just sketched. First, note that the way the INTERPRETEri executes a

KS action requires only that the code for that action be passed off to the underly-

Ing cpu of the system in which this system Is Implemented. That Is, when a KS

code is executed the INTERPRETER is not performing translation from a sym-

bolic sturcture to an executable one. The executable structure is already present

In the code attribute of the KS, and the INTERPRETER merely passes this exe-

cutable structure on to the underlying system as a process. In addition, the step

of determining what new KSs have been triggered is embodied in an algorithm

that we have developed that Involves almost no search. Thus, triggering Is very

fast (and In fact, our algorithm provides for triggering on deletions as well as

additions to the bhlckboard and for use of full generalizations In the trigger pat-

terns that may be used).

In the discussion of knowledge representation above we pointed out how a

composite KS can represent a complex algorithm. Coupled with the top level

architecture just sketched, this provides an architectural template that, can be

used to model a simple fixed control system as easily as we may use this

approach to model a complex, Intelligent node. A simple node can be represented

by a model with only one KS In which the code for that KS is the fixed algorithm

that the node performs. (Note that there Is almost no overhead to pay In using

the CONTROLLER to run that KS.) The blackboard for that simple node

would probably contain very little additional knowledge. On the other hand, a

complex Intelligent agent could be modeled by a version of this template contain-

Ing knowledge representations of all the types discussed above, Including a

number of simple and composite KSs representing the decision making and prob-

lem solving abilities or that Intelligent node. We have used this facility in a

Schemer application In which we constructed a distributed computation system

with distributed performance management and performance diagnosis abilities

[101.

This completes the discussion of the reatures provided in our test bed design

that are to be used for modeling a participant, a node, in a I)SN system. The

i)SN system designer Is provided with techniques for modeling the capahilitles of

even Intelligent, participants Iii a I)SN system by being providvd with the expert

syste n rr'amework dep(leted In 1igure ,1-6, plus lie reprIse itni li I :1tu'igv for
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describing that node's knowledge of objects, events, rules ano other procedures,

as well as hypotheses about the task context and techniques (i.e., KSs) for

managing these hypotheses. We again should note that, although the modeling

facilities just described arc especially Intended for the modeling of Intelligent

DSN system elements, these facilities are quite well suited for modeling simpler

elements of a DSN system. In particular, the minimal amount of structure pro-

vided in the top level controller for a node model minimizes the computational

overhead, and the computation modeling assumptions, that are implicit In the

use of the exert system framework just described as a model of a DSN system ele-

ment.

4.2.2 Node relations in the DSN system

Now we must consider how the designer of the DSN system Is to model the

relationships that obtain among the elements of the DSN system and the opera-

tional context within which the system is to perform Its functions. The basic

concept for how we propose to accomplish this Is really quite simple. First, we

need to provide a modeling framwork within which the models of the various

nodes, constructed as discussed above, can be embedded. It is within this larger

modeling context that the relations among nodes and the characteristics of the

task domain are to be modeled. Second, within this larger modeling context the

relations among the system nodes and the objects and events of the task domain

will be represented.

Let us review the critical relations among systnem nodes that, n-1,:;" bew

modeled. There are two fundamental types of internode relations that. must be

represen ted In a DISN system design, the modeling of the C,:):1JTT1 JJinitationts, rela-

tions among the DSN system nodes and the modeling or the control or authorlty

relations that obtain among the system olem('nts.

The modeling of comnnlnleatlon relations amrnong n)o(d(es ilil\i .,(es tli(, fo llow-

ing baslc notions. Su ppose. for examplp, that. we wish to nodel : speclic ,'om-

muni cation betwe, i two nodes, say Node A and Node_B. E:i eh of lh('sv Ino(d's

is. of course, repres(nted by a stru(ture Ilke lhait of flgur( .1-I. A oniniiI:tI (

from N)d'( _. A lo Noted .Il a i )h' rhIl('('(led :1 :im ll p11111! (of '(mic :w' fi n (f Ii,' tirst
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node that Is represented In the larger modeling framework in which the two node

models are embedded. This communications output from the first node can serve

as input to a structure that models the communications medium through which

the message from NodeA travels. The message is processed by the communica-

tions medium model whose output Is the Input to NodeB's message receiving

procedt ures.

The communications medium model will be constructed so as to model

some specific mechanism for dealing with a particular type of message transmis-

sion such as, for example, a packet radio network. The model of such a commun-

Ications medium can be constructed using the same approach as that used to

model a system node. This model of a communications medium will contain pro-

cedural elements (KSs) that represent operations of the communication medium

in receiving a message, processing it, and then passing it on. In addition, the

communications medium model can also include KSs and other elements that

represent the effects of noise or other perturbations on the message passing pro-

cess. Finally, the communications medium model passes on the results of Its pro-

cessing to the receiving node by producing output In a form that represents

proper Input for the message receiving KSs of the Intended recipient node. (This

is, of course, only true provided that the message has not been "blocked" in its

transmission as a result of processes of noise or other interference being modeled).

This approach to modeling the communications that occur among DSN sys-

tem elements requires no general modeling facilities beyond those already pro-

vided for modeling the decision making elements of tile DSN system. It has tile

advantage of providing tho system designer a way to Ind(ependntly model t hc

four primnry components of Internode communications These are; message corn-

position and sending, message transmission. transmission irn (rferliee, aind ties-

sage reception and Interpretation. UsITng this approach it is possible to model In

great detail a' variety of communications methods being sitiltaneously used In a

i)SN system.

The other fundament al Intinode relation .o dscuss hwre Is 1h a of control

or authority relations aniong system nodIes. The IoIelink techn iquies jtst,

described for depleltig corin utllll lons rhtlons cal Ihc, exillended slight iv to

handl,, this inodeii, -hore. In other words, control by one node14' over the :wll hus
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of another may be modeled as a type of communication plus "rules" held by each

node regarding the bounds of authority. In particular, a "command" from one

node to another can be a communication that, when processed as Input by the

second node, Is the trigger condition for some specific action (KS) of the recipient

node.

4.2.3 Task context modeling and simulation

Let us now consider how we may use the same modeling approach just

described to model the task environment in which the DSN system will operate.

By now the reader should be able to anticipate the gist of this discussion. The

functional elements of the task domain are modelable by the same means that

are used to model the DSN system nodes. That is, each functional element is a

modeled as a structure that produces output representing the effects of that ele-

ment on the DSN system and on other elements of the task context. For exam-

pie, suppose that the I)SN system Is engaged In a task of using sensors to watch

the activity of vehicles along a road network. Consider a model of a specific

object that is "moving" along a particular road. This object movement can be

represented by a computational element that produces as output an update of its

position over time. This output can be used as Input by a particular sensor

model that is constructed so as to be able to "observe" objects In an area occu-

pied by the vehicle (model). This Input to the sensor can, In turn, cause that

model to produce an output (say, In the form of a commmunication) that Is

taken as input by one or more nodes which process Information from this particu-

lar sensor. Thus, the model of the vehicle has caused a chain of activity that cul-

minates In some set of decision making nodes of the DSN system in being called

to respond to that domaln object's activity.

In general then, each functional object In the task environment can be

modeled by an Instantlation of the architectural framework of Figure 4-6 contain-

Ing data, and other procedures specific to the functional propertles of that ojct.

The actions or this ol)ject pro(uce outputs that, are sultal)he Inlputs to specilie

),SN system components that are intended to "perceive" arid respond to that.

object's activit.y. This modeling of cause and efIe('t Is very similar to the way In

whilch conurnuniclalion relallons a 1noiig I)SN sy.slin nodes ar, to In)' modi'led.
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The general testbed enviroment will, therefore, be required to provide a context

for representation In which the specific models of the DSN system nodes, the

communications media, and the task environment's functional entities can all be

modeled. The activities of all these models are recorded in the testbed's data

base as outputs such that each output can be discerned by all and only those

models that are Intended to be able to react to the activity represented by that

output. The testbed data base holding the representations of all these actions of

system and context elements, must be organized so that the output from any par-

ticular element will qualify as an input for only those other elements that are

appropriate.

4.3 AN ARCHITECURE FOR THE DESIGN TESTBED

In the preceding discussion we have presented some ideas on how to model

the elements of a DSN system. The modeling approach we have offered is to use

a generalized expert system architecture as the basic "template" for designing a

node in a DSN system. In addition, we have suggested that this same set of tech-

niques can be used for representing the functonal elements of the task domain as

well as for depicting the command and communication relations that obtain

among the DSN nodes. We have not yet dealt with how a design environment

might be provided as the framework within which to do this design construction,

rapid prototyping, and evaluation.

We will now present an architecture that provides a context for the

development, of the types of structures Just discussed along with facilities for

using these structures to simulate the performance of the DSN system they arc

intended to model. Since the approach we have proposed relies upon an Implicit

analogy between expert system construction and DSN system design, we will offer

as our general solution a framework that is essentially an expanded version of an

expert system building environment. We present the design of an Al architecture

for expert system construction called Schemer as he basis of a testlb(l environ-

ment in which to construct, evaluate, and run simulations of a I)SN design. The

basic ideas in Schemer are ones that we have had a great deal of experience wit h.

having used a simpler version of this system than that presented here as an

expert system development envi ronininent, for c(ouncirtlion of a nubel)er of ex p'rt
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system applications. However, in order to deal with the problem of modeling a

distributed system, and a system in which many of the elements are themselves

intelligent decision making agents, we have found It necessary to greatly extend

our original Ideas.

The basic idea behind Schemer Is to provide a computational environment

in which an expert system designer can incrementally build his application by

specifying the components of his system Including the representation of objects

that must be known to the expert system, and the procedural rules that define

the system's capabilities for taking actions to carry out Its Intended tasks. Thus,

the expert system development framework must provide the developer with a

knowledge representation language to encode the expert system's knowledge of

essential objects and events In the task domain and a general format for express-

ing the procedural elements of the expert system, its knowledge sources.

To provide this representational support Schemer Is equipped with a gen-

eral frame representation language for expressing such knowledge, and a special

format for representing procedural knowledge. Not surprisingly, the approach we

have chosen for knowledge representation has already been discussed In the previ-

ous section. The representation language approach discussed there for represent-

Ing the knowledge of a DSN system node Is precisely the type of language that

we have used in Schemer, and the KS definition of Figure 4-3 is exactly the for-

mat used for representing the procedural elements of an expert system within the

Schemer development environment.

In addition to constructing the elements of his expert syst.em using the

representational facilities just described, the developer must be able to run early

versions of his system on test problems to determine whether the design to that

point Is achieving expected behavior. Similar to the Ideas in the previous section

we found that the basic representation facilities for constructing the expert sys-

tem Itself could also be profitably used to build a kind of simulation environment

(I.e.. a set of test cases) against which varlous versions of the system design could

be tested. in fact, our approach to providing a slmulailon based., rapid proto1yp-

Ing environment Is motivated by the experience that we have mtd in using the

modeling capabil ties of our expert, system (levelopuent en% Ironm(,nt to c(nst ruct,

iiodtels of t sk sittuitl(ons galnst which .yt s (,vs llt c could he 1,st. d. This :1lsA
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means, of course, that the combined expert system model and task domain model

would need to be able to be put In a form that could be executed. Hence, Sche-

mer was required to be a context for controlling the execution of such design pro-

totypes in the context of specific models of the task domain.

Figure 4-7 depicts the way that we designed Schemer to provide this sup-

port for both expert system design and prototyping. Essentially, the idea we pur-

sued was to take the basic blackboard architecture for representing an expert sys-

tem such as the type shown In Figure 4-6, and then to add some additonal levels

of control to the architecture to support design construction, scenario context

construction, and control of execution of the expert system on the model of the

task domain. The structure of the blackboard in the figure is divided (for pur-

poses of presentation) Into a left half on which various levels of knowledge

representations are written, and right half on which the procedural KSs are

stored. Vertically we have depicted four basic levels of representation. At the

lowest level there are the knowledge representation structures and the KSs of the

expert system model itself. This level Is the part constructed by the developer

that will eventually stand alone as the expert system application. Above this

level Is the representation of the simulation environment for testing the expert

system design. For the most part the task model is represented by KSs that pro-

vide simulated events as input to the expert system KSs. These task domin KSs

do this by posting their output on the part of the board labeled "Task Domain

Event Reps." These event representations serve as triggers for the expert system

KSs at the level below. This approach provides a way of simulating the Interac-

tion between the expert system and events in the task domain.

The upper two levels of the blackboard in figure 4-7 represent the way we

have provided automated tools In the original Schemer development environment.

The third level from the bottom represents the presence of some evaluation tools,

encoded as KSs. and the representation of the results of evaluation on the left.

The level Immediately above this is the set of KSs that can be used to control the

use of the system for various activities. For example, control KSs at this level

can take the elements of a scenario and cause the domain model to post events or

activity that, In turn, trigger the actions of the expert system In response. Also,

we have used control KSs at this level to trigger special analyses to be performed

on the expert system's activities upon detection of a particular CvCnt. that. has
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Figure 4-7: Basle Schemer Architecture for DSN Design
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occured during execution of the simulation. Other forms of these control KSs

that we have used Include a KS that effectively "single steps" the execution of

the expert system being evaluated and control KSs for displaying the data struc-

tures that "cause" triggering of the expert system KSs as these occur.

The top level control structure of the Schemer architecture Is essentially the

same as that we have described in the previous section. User interaction with the

development environment is accomplished by having user post input events on

the control blackboard which trigger appropriate actions by Schemer. Thus, this

system can be operated Interactively as well as in the fully automated manner

that is assumed for this general type of architecture.

There remain a number of limitations to the current version of Schemer as

a DSN development environment. First, little or no work has been done on the

development of explicit evaluation, tools beyond those tools to support the empir'l-

cal observation and summarization of the expert system's performance on specific

scenarios3. Second, nothing is provided in the way of "library" facilities that con-

tair frequently used control and structures that can be employed for a specific

application [17). Third, and perhaps most important, the expert system pro-

cedural components that can be modeled in the original version of Schemer are

either simple condition-action rules or composite rules in which the action part is

some algorithm for combining simpler actions. There is no provision made in this

earlier version of Schemer for allowing a KS to be an entire expert system arch!-

tecture of Its own as we discussed In the previous section. Finally, we have yet

to integrate non-Al algorithms and systems such as GTC Into a particular Sche-

iner application.

In Section 4.2 we discussed a set of representation and modeling techniques

that we believe explicitly address the requirements of a DSN design testbed. In

addition to these facilities we are condsidering some additional extensions to the

previous version of the Schemer architecture. Along with the analysis of represen-

tation from section 4.2 we have devised the changes depicted in Figures 4-8 and

4-9 to address the limitations of the original Schemer development environment

for use is a DSN system testbed.
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In Figure 4-8 we see five levels of the testbed blackboard. The lowest level

corresponds to the modeling of the DSN system and the task context of that sys-

tem. The level above that Is used for knowledge about the state of the simula-

tion (on the left of the diagram) and KSs that are used to control the execution

of a simulation from a script or other description of that scenario provided in the

space to the left. These areas generally correspond to facilities that were also

available In the earlier Schemer design, although the system facilities for simula-

tion control are now separate from those for design. The third level from the

bottom of the figure refers to tools for, and knowledge about, evaluation or a test

of a design on a scenario. In other sections of this report we have discussed tech-

niques for evaluating some portion of a design analytically. Certainly these tech-

niques should be incorporated as evaluation tools that can be called to use by the

DSN system developer for analysing or verifying the construction of his system.

However, the complexity of a DSN system precludes the use of such analytic

techniques in many cases. Therefore, another approach is called for. There are a

number of statistical and other techniques that can be applied to the evaluation

of a system's performance by analyzIng that system's performance data and com-

paring it to some standard. For example, suppose the expert system being

developed Is intended to construct hypotheses that explain the sensor data. A set

of evaluation tools that might be provided could be some to compare the asser-

tions being hypothesized by the expert system with the "ground truth"

represented in the scenario description that is driving the simulation of that

expert system's task performance. We believe that this simulation based

approach to a design methodology can fruitfully employ a great number of such

statistical tools since these tools yield useful descriptions of such things as the

MeTiveness or acc ura('y of system behavior.

The next levci up in the figure represents the presence of libraries that can

provide templates of types of structures that are likely to be useful In a wide

variety of design situations. This can Include templates that describe commonly

used forms of DSN system components, templates for specific types of communi-

cations relations among nodes, or colnnand structure templates. Additionally, it

would be extremely useful to have a library of standard test cases that could be

used by system designers developing DSN systems for well known classes of appll-

cation. The testled could provide assistance In the form of template " Instantia-

tors" that e'n a e cAlled irito us(' ihy the designer to insert a specialized form of
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some template Into his design.

Finally, the next level of the system provides for a set of tools to explicitly

aid the designer of a DSN system in both the construction and test of his design.

We have done some experimenting with this notion in our work on Schemer by

looking at ways to simplify and automate the more repetitive aspects of the sys-

tem designer's task. For example, we have developed a format for constructing

new KSs in the system which structures the organization of the KS definition for

the designer by providing a template for KS definition. When filled out this tem-

plate Is automatically used by a design tool to construct the actual KS and its

underlying code object. Other tool we are experimenting with include check-

pointing facilities and tracing facilities for examining the conditions that lead to a

particular action by the expert system. An important aspect of this topic of

design support is that of explanation 118]. Tools to provide natural language

descriptions of the performance of a complex system like a DSN system are sorely

needed. As a starting point existing A] techniques for producing explanations of

system performance would be an important addition to the design testbed.

There Is one more limItation of the earlier version of Schemer that we have

yet to address. This Is the need for modeling elements In a DSN system that

have the complexity and sophistication of intelligent agents. In Section 4.2 we

described the general model that Is to be used to accomplish this modeling. This

general model, shown In Figure 4-6, Is Itself a complete Al knowledge based

expert system architecture. The problem then Is to expand Schemer so that such

a model can be embedded in a larger expert system framework. WVe have pro-

vided for this by expanding the definition of a knowledge source to that It caii 1o

instantiated as a complete blackboard subsystem with Its own blackboard and its

own )nternal KSs. Figure 4-9 exemplifies this type of KS. The example of Figure

4-9 Indicates that the code of the KS can be a blackboard CONTROLLER and

the data space slot of that KS can be an entire Internal blackboard. We will

refer to this type of KS as a "subsystem KS" (SSKS). This simpie move provides

an enormous Increase in the modeling capabilities of the Schemer system. The

overall blackbaord framework of the Schemer architecture Itself can now contain

embedded models of blackboard systems. These embedded expert system archl-

tectures can more fully model the complex Intelligent agents in a l)SN system.

There are. however, two points that should he clarifled in order to( un(lerst 31d
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inte- I3 r - Event Soehd-i

Code: Interpretex p1r-ter j-o-ae lDetectorI u'-t

Failure act:

Description: Move KSs that determine architectural

constraints to front of agenda queue,

then execute _______"____--T ___________

Inter- Board Event Sched-
Code: Interpreter preter Mgna er Detector uler

Knowledge space: Constraints from blackboard, user inputs,

architecture ta; No)o -:

FIgure 4-9: A Subsystem KS In the DSN Design System
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how such a complex KS can be used In the encompassing blackboard framework.

First, the so-called "local" blackboard of an embedded SSKS can in fact be

a shared area of an encompassing blackboard. That Is, the content of the SSKS's

blackboard can be a pointer to data actually external to that SSKS. This tech-

nique is needed to provide for the sharing of Information that might be called for

In some models. It could also presumably be a way of modeling how specific

events that are external to an SSKS could trigger specific actions within that

complex system.

The second point to be clarified has to do with the way that such an

embedded architecture is controlled by the top level of Schemer. As with any

other type of KS a SSKS Is Initially called Into action by occurence of the event

described In its TRIGGER slot. When actually executed the CONTROLLER (in

the code slot of the SSKS) Is used in place of the top level CONTROLLER. If

the SSKS halts (i.e., Its AGENDA becomes empty) then that KS execution can

terminate Just as simpler KSs do and the top level CONTROLLER resumes Its

operation. Under certain conditions, however, It may be necessary to be able to

Interrupt the operation of the SSKS In order to perform some special operation.

An example of this would be the use of some evaluation KS that interrogates the

knowledge base of the SSKS periodically to obtain, say, performance statistics on

that SSKS. In order to provide for this type of control, the top level CON-

TROLLER can insert some annotations in the controller of the SSKS that causes

that embedded interpreter to suspend periodically. When the SSKS suspends the

top level can check for the occurence of assertions on the blackboard of the whole

system that could trigger high priority KS to perform some action and, If

appropriate, even cause the suspended SSKS to be aborted rather than resumed.

This latter type of control would be needed If. for example, the designer had

inserted a control KS that waited for the object being modeled by the SSKS to

achieve some special state and then halt the execution of the simulation of which

the SSKS was a part,.
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4.4 SUMMARY AND DISCUSSION

Let us summarize the discussion of the testbed arhitecture just presented.

We have capitalized upon the analogy or expert systems to decision makers by

proposing a design methodology that treats the design of a DSN system as Identi-

cal to the problem of designing a system of distributed, cooperative expert sys-

tems. The architecture we have developed and Implemented In a preliminary

form provides a very powerful and general computational model within which to

devise the broadest class of DSN system structures.

This approach to a design methodology is quite radical in Its emphasis upon

techniques of empirical observation of system behavior as a means of evaluating

system design. Becuase of this emphasis on performance observation and

analysis, a major requirement of the testbed Is that it supports the construction

of test scenarios that can be used to elicit such performance from the system.

Thus, the ability of this testbed architecture to support rapid construction of

such scenarios Is almost as significant as the rapid development of the DSN

design Itself.

However, as central as we hold the empirical, rapid prototyping approach,

we do not adhere to this approach to the exclusion of the use of other more ana-

lytic techniques of design evaluation. It Is a strength of this approach that such

techniques can be readily incorporated In the testbed as specific tools for evalua-

tion that can be used In conjunction with the simulation and observational facili-

ties of the Lestbed.

For the present project wc are focusing on the development of the applica-

tion of our testbed concept zo the design of DSN systems that are built upon the

use of the GTC and the Information fusion algorithm as the fundamental node

capability. As noted above, we have been fortunate In having been able to gain a

great deal of experience with this concept by actually Implementing partial ver-

sion of such a testbed for use in the development of various expert system appli-

cat ions. lowever, the type of testbed architecture plus the full range of capabill-

ties we have presented here has yet to be Implemented. We see this addiltional

effort ws an important next. step In assessing the validity of our concepts for I)SN

systen di('vloptnent and for their value in assessing other lecliuiologles such as
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the Generalized Tracker/Classlfier (GTC) or other more analytic algorithms.
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5. SIMULATION EXAMPLES

5.1 INTRODUCTION

A simulation of a distributed sensor network was performed to test and

evaluate algorithms and to explore various technical Issues experimentally. The

current simulation focuses on the processing within each node and a perfect com-

munication model is assumed. Each node in the network Is equipped with a GTC

(Generalized Tracker/Classifier) which processes the local sensor data and an

information fusion module which ruses the information sent from the other nodes

with the local Information. The present status of the simulation effort is as fol-

lows:

- The communication pattern Is arbitrary. Any communication between

any two nodes can be set up.

- The maximum number of nodes in the network is four. There is no con-

ceptual difficulty in increasing the limit on the number of nodes but simu-

lation time will increase substantially since a single computer Is used to

simulate a distributed system.

- The processing of the local sensor data Is by means of the GTC developed
In the previous project (11. Information fusion Is based on algorithms for
hypothesis formation and evaluation described in Section 2.

- The language for the simulation is Lisp. Lisp has been chosen because of

the data structure and the plan of converting the simulation to run under

the architecture of Section 4.
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In order to handle arbitrary communication patterns among the nodes, the

information fusion algorithm includes mechanisms to trace the histories or the

tracks and hypotheses in the information graph. Without any loss of generality,

Inrormation fusion from multiple nodes Is carried out sequentially In a binary

form, L.e. to fuse the Information from node A. B and C, we first fuse that of A

and B, and then the result Is fused with the Information from C. This simplifies

the Implementation of the fusion algorithm considerably.

In this section, some simulation results for two-node and four-node sensor

networks are presented to Illustrate the performance of the DSN fusion algo-

rithm. For both examples, a simple discrete-state road network scenario was

chosen and the target dynamics were assumed to be Markov with the road-

segments as states. The main reason for using the simple target dynamics and

scenario was to minimize any unnecessary numerical complexity due to target

motion and to concentrate more on Issues resulting from arbitrary communica-

tion pattern. The simulation program, however, Is capable of handling more

complicated scenarios If the appropriate algorithms are Included.

The underlying models In the scenario are:

a. Targets are moving along the road network with discretized straight-line

segments.

b. The target dynamics are Markov with a given transition matrix.

c. Each sensor measures position (segment number) along the road with

some uncertainty due to the bearing and range measurement noise.

Each sensor also has certain masked regions which It cannot observe.

d. The probability of detection of a target In each road-segment by a sen-

sor Is a function of sensor masking and the relative sensor location.

In addition to this, independent and identically distributed target models have

also been assumed In the current simulation.
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5.2 TWO-NODE COMMUNICATION NETWORK

First we consider the two-node case, assuming each node has only one sen-

sor. The sensors observe the same road network although they have different

fields-of-view. The road network and the location of the sensors are shown In

Figure 5-1.

5.2.1 Scenario

Each Individual target position Is represented by the segment number and

its evolution Is assumed to be a Markov process. The target state at any time Is

thus characterized by a probability distribution on the road segment. Because of

the terrain, the two sensors have different masked regions (see Figures 5-2 and 5-

3). Each sensor generates a measurement in the following way. The detection of

a target at state xi by a sensor depends on the detection probability which Is 0

whenever the target is in a masked region relative to the sensor. For any

detected target located at z, the measurement y, which is also a segment

number, is generated according to the following conditional probability distribu-

tion function: (see Figure 5-4)

p(Y I (5.1)

where

r mix(I, Wm,(v,

ai(y,) f x g,(r I F(z)) 6 (B iO(z))drd0 (5.2)

U(y,) Is a uniform function on segment y with unity value and g,(r I '(x)) and

ggo 6 I(z )) are sensor characteristics corresponding to the the measurement uncer-

tainty In range and bearing given the average range and bearing of a particular

target location z. False alarms are also added according to the sensor model.

The total number of targets Is constant but unknown and Its a priori distri-

bution is Polsson with mean vo. The number of false alarms In each scan Is also

Polsson with mean V".A for each sensor. The target positions are Independent

and Identically distributed with the a priori distribution uniform over the road
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Masked Region

Figure 5-2: Masked Regions of Sensor 1

Masked Region

Figure 5-3: Masked Regions of Sensor 2
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p(y Iz)

Y

Figure 5-4: Conditional Probability Distribution p(jMx)

network states, and targets are expected to move Into the field-of-view from the

edges at any time.

5.2.2 Communication Schemes

Three types of communication schemes were examined:

a. Broadcast communication: the two nodes share and fuse their Inrorma-

tion every third scan.

b. One-way communication: node 1 sends information to node 2 every

third scan but node I gets nothing from node 2

c. Decentralized: the nodes do not share any Information
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If sensor data are broadcasted every third scan, then the broadcast case can

be regarded as a centralized scheme where the central node receives all the meas-

urements periodically. In the case when only tracks and hypotheses are commun-

icated, the processing is essentially hierarchical with intermediate results avail-

able at each node between periodic instants. The decentralized case Is the other

extreme situation. In each case, all the hypotheses at each node are communi-

cated. The parameters used in the simulations are given in table 5-1.

In each simulation, all the hypotheses were examined and compared to the

true trajectories of targets according to the measurement-to-target association

histories. The hypothesis best matched to the ground truth is defined as a true

hypothesis. The most likely hypothesis (highest probability) is called the best

hypothesis.

Expected number of targets o 4

Expected number of false alarm 1'FA 1/scan

Probability of detection PD max 0.9

range a, 0.5 (km)

Measurement error bearing go 0.2 (radius)

radial velocity o7 0.1 (km/mln)

Pruning threshold f 0.05

Table 5-1 Simulation Parameters
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5.2.3 Simulation Results

In the following we present the results of some sample runs. More extensive

simulation results will be performed when the development of the test bed Is

completed.

The target scenario (ground truth) and the probabilities of detection are

given in Figures 5-5 ,5-6 and 5-7. As shown In Figure 5-5, two targets A and B

move from left to right on the road network, where the subscript on each target

represents the corresponding time Index. Note that In Figures 5-6 and 5-7, the

detection probabilities are lower on the roads which are almost orthogonal to the

sensors' lines of sight. This can be used to approximate the effect of the velocity

Doppler on a MTI radar.

Figures 5-8 to 5-13 show the probabilities of the best hypothesis versus the

true hypothesis at each scan for two nodes under different communication

schemes. The results of the decentralized case are shown In Figure 5-12 and Fig-

ure 5-13 for node I and node 2. As can be seen from the figures, the performance

of each node Is quite poor. The probability of the true hypothesis only

approaches that of the best hypothesis during the last four scans of node 1. For

node 2, the probability of true hypothesis Is never higher than 0.2 as can be seen

In Figure 5-13. This Is so because In the decentralized case, each node only

processet Its own local observations which are quite sparse with the given masked

regions.

Figures 5-10 and Figures 5-11 present the results with one-way communica-

tion. Obviously. node 2 has better performance than node I reflecting the fact

that node 2 receives more Information than node I due to the communication

pattern. Note here that the behavior at node I is exactly the same as In the

decentralized case (see Figure 5-10 and 5-12). This Is obvious because as in the

decentralized case, node I does not receive any Information from node 2. Simi-

larly, during the first two scans, the results of node 2 are the same as In the

decentralized case since no information has been received yet (see Figure 5-11 and

5-13). From scan 3 on, because the Information from node I begins to arrive via

communication, the probability of the true hypothesis Increases and reaches 0.8

In a few scans.
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The results of the distributed case given In Figure 5-8 and 5-9 for node 1

and node 2 clearly show Its superior performance. Almost all the best hypotheses

are the true hypotheses as can be seen in Figure 5-8 and 5-9. Comparing Figure

5-8 and 5-9 we can see that node 1 and node 2 have the same performance at the

communication times, this is true because both nodes share the exactly same

information when broadcast communication takes place.

5.3 FOUR-NODE COMMUNICATION NETWORK

There are now four nodes each with only one sensor observing the same

road network.

5.3.1 Scenario

The sensor locations and their fields-of-view with respect to the road-

network are shown In Figure 5-14. The target scenario is the same as in the

two-node case. Because of the terrain, the masked regions for the sensors are

different. The probability of detection for each sensor Is shown in Figure 5-15 to

Figure 5-18.

5.3.2 Communication Schemes

A hierarchical type of communication scheme was tested:

1. Every odd scan node 1 sends information to node 2, and node 3 sends

information to node 4.

2. Every even scan node 4 sends Information to node 2.

L.e, node 1 and node 3 only transmit information to other nodes, node 4 Is an

Intermediate receiver/processor/transmitter and all Information is thus collected

by node 2 with communication delays. The communication pattern and the

Information graph are shown In Figure 5-19 and Figure 5-20.
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Bi Location of Target B at scan i

Figure 5-5: Target Scenario
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Figure 5-11: Best Hypothesis versus True Hypothesis for Node 2
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5.3.3 Simulation Results

The same simulation parameters as In the previous example were used.

Figure 5-21 to Figure 5-24 show the probabilities of the best hypotheses versus

true hypotheses at every scan for each node. From the results we can see that

node 2 and node 4 have better performance than node 1 and node 3. This Is so

since they have more information.

The true hypotheses of node I and node 3 are never higher than 0.3 (see

Figure 5-21 and Figure 5-23), similar to the previous examples, this Is because

they only process their own local data which is not very good and never receive

information from the other nodes to confirm or correct their hypotheses. Node 4

does not receive any information from node 1 or node 2, however, node 4 does

receive Information from node 3, which gives it fairly good sensor coverage and

detections (see Figure 5-14, 5-17 and 5-18), resulting in reasonably good perfor-

mance (see Figure 5-24).

From the results of node 2 (Figure 5-22), wee can see that the probability of

true hypothesis approaches that of the best hypothesis after 2 scans. It Is not

clear from this sample run how much better the performance of node 2 compares

to that of node 4. However, It Is obvious that node 2 and node 4 perform better

than node I and node 3 because of the communication structure.

5.4 CONCLUSION

The information fusion algorithms developed In Section 3 have been tested

via simulations using discrete-state road network examples. Various communica-

tion schemes with different number of nodes have been examined. The simula-

tion results have shown that the algorithms produce the expected performance.

More extensive simulations using other scenarios will be conducted after the

development of the simulation environment is completed. The simulation

environment Itself Is being enhanced to Improve Its flexibility and effliclency.

When this development of the simulation environment Is complete, we should be

able to perform more extensive simulations using other scenarios. In particular.
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we Intend to use other target and sensor models and study the effect of varying

parameters such as hypothesis pruning threshold, detection probability, false

alarm rate and measurement errors.

Various ways of speeding up the processing of each node as better

hypothesis management, as well as ways of Improving the overall system perfor-

mance, such as better communication strategies, sensor control, etc. would also

be Investigated using this simulation environment.
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Appendix: Distributed Estimation and

Multitarget Tracking

This appendix summarizes all the formal arguments concerning distributed

estimation and distributed multitarget tracking In the distributed sensor network

context.

1. Formal Definition of Distributed Sensor Network

We first formalize the concept of the distributed sensor network In terms of

an information graph. Let N be a nonempty finite set of information processing

nodes (simply nodes or estimation agents) and S be a nonempty finite set of sen-

sors (or information sources). A nonempty set Y,, called sensor format space (or

information format space). Is giver, for each s In S. For each n In N, a setQ,, of

private sensors Is given. Each S, is a subset of S. Then, for a given Interval

T--tot tJ, a subset Z of the set

UY. XTx{ }
# ES

is called the total information (obtained in T). Each element (z.t ,s) in total

Information Z Is called a data set (or sensor report) generated by sensor s at time

t Any subset Z of Z is cailed vartial information set or simply information set.

Given the total Information Z, the set

K =( t.s)eT XS ;(z,ts )EZ for some }

Is called total index set for Z. Any subset of K of K Is called partial index set or

simply index set.

A subset C of T X "/ x N X N Is called communication schedule. An viCit)lt

(I 1'.n n') In C represents the transmission of a message by node n at t lne t

which Is received by ndtet, n' :t ilte I '. \VC call any ('nl(iet of
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I = IST U Is U Ir U I'C

n znformatzon node, where

lsr = K X {ST}

Isu K X {SR }

lc7 z= {( ,n ,CT ) (t .t ',n .n ')EC}. and

IC,11 = {(t,n,("R) I (t',t,n'.n)EC}.

We call an Information node In 'sT (IsR, crr or I(*, respectively) a sensor

transmitting node (sensor receiving node, communication transmitting node, com-

munication receiving node, reps.). An information structure Is a binary relation

on I, which Is reflexive and antisymmetric. i<i' means i<i' but i~i'.

H 0I means t Is an Immediate predecessor of I". The ordered set (I.<) Is called

an information graph.

Let us define

Kin)={(t s)EK I sESn}.

ST K' T x{ST}, Ixf K"}x{SR },

CT"r {(U n, CT)El(,r I t ET }

I, -v {t *n .CR )EIl(,? I tE T}, "td

I I U I..r (qIU I" I

T hen the following assumptions are made on the network:

Uia.'or A.% umpt1ions

.1: (No Sensor Sharing .,, h S,,0' ifor :ill (i .?I '( \ N' such th:t n/n'

j.,\2j (iFinltvness) Z and C :re hoth finite.

]{.'\3j ( No In(hexln, c(',nf,,inOn) Z is is miorphic to K.

! , lnforrtail(n s.,rcs l I.4 h J -. ')In Il,. is 1ini0nim tIji Il I and 1 ha., 111Iy oll,
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successor so that (k ST) F- (k S1 )( El)

[A5] (Information Exchanges) (t,n,CT) H (t',n',CR) if and only if

0t .t'.,n '}CC.

[A6] (Causality 1) (m .1 .1 )<(m ',t '.1') Implies It '.

[A71 (Causality 2) The binary relation < is transitive.

jA8] (Total Order) For each n in N, (I"), < ) Is totally ordered.

Remarks:

(1) [All to [AS] are more or less standard assumptions.

(2) [A41 Implies no delay in sensor reporting.

(3) [AS] allows us to model communication delays.

(4) [A6] prohibits any negative time delay.

(5) [A7] prohibits any cycle in (1,<).

(6) [A8] implies sequential data processing (and Implicitly perfect memory) for

each node.

Given an information grapi (I.<). we can assign a maximum amount of

information to each Information node iEl. More precisely, for each iEI,

K ' "- {kEK I (kST)<_i) (1)

is called the maximum index set at node i. Similarly

Z"I= {(z,k)EZ I k K" ' } (2)

Is called the maximum information set at i. Then the following observat!onF foi-

low immediately from the definitions:

Proposition 1:

(1) K - {kcK (I -. SFR 1<t} for all t in I.

(2) K C KI '"" if i< i'.

(.3) K ,, K.,for all: in I.
i'" I

I) K, U K for oil ,n I.

The proof Is ol)\'OIIS.
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Remark: The converse of the (2) of Proposition I is not necessarily true as can

been seen from the following counterexample:

K I:'=K i ' but neither i.,<i or i,<i..

Due to the Isomorphism between Z and K, all the K's In Proposition 1 can

be replaced by Z's, i.e., we have

Proposition 2:

(1) Z"' .{(z,k)EZ I (k.SR K} for all' in 1.

(2) Z"'CZ 1''1 if it _i'.

(3) Z"' = U Z"'V f or all i in !.

(4) Z"=r--- UZg(" ' )for al i nI.

In the following, we describe two lemmas which are direct consequences of

the deflIntions and are used In the following sections.

Lemra 1: For any set ' of Information nodes, we have

i - i " - U {K'' I I ' ' tor all iEI}
'ci

Proof- Suppose k %KE'f . Then by definition I":- k .S <i for all :C. or
mci

k C K and I"'< i for all i El . The convers(e Is olvious. Q. .1).

According to this lemma, given a set 1 of information nodos, the Intersec-

tion of the maximutn Index sets, or equivalently comninon Irfornmatlon contained

In ll 'ollee'inn of Ihe ;ixlr:1xihun inforniation oltaltii In a selt or Inform:ilt
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io(les. is charact erized as- the uinlon of n axin nin index sets on thc s-t or corrinion

predece ssor Inforanition nodes. A stronger version of Lemma 1 Is the following:

/. czma 2: Suppose I,, be a set of information nodes such that

# I
(2) g K' #0, and

(3j there is no pair ( .i')C(,,X I0 such that i <i'.

Then.

I -- {itiiC T i< it fo r all i,0 )

is not empty and we have

n K" U K"' (5)
iEl iCI,

Proof: !, -0 Implies K"' -0. Therefore it suffices to prove (5). As In Lemma

1. it follows directly from the definitions that U K'') is a subset of n K'''
jcll l

To prove the other Inclusion, suppose kEn K(b° ) or (kSR) :() for all
ioEIo

i)El o. Let k (a .t )ES, X T where n EN Is the node uniquely (Assumption [All)

determined by k. Since IV is totally ordered (Assumption [AS]), assumptions (I)

and (3) guarantee existence of an i" In ilI "' for some n'EN such that n':,n.

Hence. there exists a transmission node i' which belongs to n , i.e., i'Cl L:., sucih

t ha

(k,,SR) < i' < ill l

for some i" In l. Let T be the smallest element i' In I""' which stlesfes (6" wlth

some i" In 1.

i ror my . t (, 4 1 is i i ch.trdliwti; , or ltw nuit n r of it, ,ih mt,' .
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I

Then. for any ilEI1 \I'" we must have t-< i because (k .SR must be con-

nected through a communication link which Includes :. If i,,v(/Fl'", we mnust

also have t <I, because I" I is totally ordered and i,<- contradicts with assump-

tion :3). Q.E.D.

2. Distributed Estimation Problems

This section discusses the distributed estimation problems with arbitrary

information graphs.

2.1 Static Estimation Problems The object to be estimated is modeled

as a random element z (called state-of-the-world or simply state) taklng values in

a measurable space (XB) where X is a locally compact Hlausdorff space satisfying

the second axiom of countability I and B is the a-field of Borei sets in X. Let I

be a a-finite measure on (X.B) and call the measure space (X.B.1) state space.

Implicitly we are assuming an underlying probability space (OF.Prob) but we

rarely must refer to !t.

In parallel, for each sensor sES, Y, Is a locally compact Hausdorff space

satisfying the second axiom of countability and the sensor format space Is

redefined as the measure space (Y, .B,,t, ) where B, is the c-field of Borel sets in

Y, and i, is a a-finite measure on (Y.B,). All the sets defined in the previous

section are then redefined as random sets. For each sample, we aLssumc that all

the assumptions 'AIl - [AS] are satisfied (at least with probability Con). Accord-

Ing to the common custom, we will abuse the notations p( ) and p,,- to the fuHl

extent.. We will Hlst our assumptions below:

Assumption"

(fll (Absolute Contlnulty) Random variable r hau :in ahsolhit cy ccu tnunoits dis-

I I , I- m i I.%i t l(, t (c:i (' a ,(' I, (-:gitt {I-4 (-m( It It m ml~) l m l l :I )I|I It
-
, :III I 1 h1141r I If' II t 1 '- on. flt',l vvk l %% I II,1

rA.k8
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trIbutlon.

[132] (Independence) Random sets K and C and random ordered set (I.<) are

independent of state x.

[1331 (Conditional Independence and Absolute Continuity) Given x and K. each

element In Z is conditionally Independent from each other and has an abso-

lutely continuous conditional distribution.

To obtain a general result with an arbitrary information graph, we need a couple

of lemmas.

Lemma 8: Let m be a positive integer and let (a )m
1, E(-ocoo) ) . For any

subset M of M={i....m }, define a [0)-=O and, if M$O,

vn EM

Then, for any positive integer n and for any n subsets, M... ,M,, of M, we

have

a( U Mi- 1]-);-'( N] a[O~ n (9)

NN,' 3
jEN

where

S C n... } # (N=} (10)

Proof. We will use the mathematical induction. When n ;1, the statement is

clearly true. When n =2, (9) is

a M, UM.,] = a]Af, - aIM.., - aimnm.\f. (I)

which Is also obviously true for any two subsets Af, and M.. of M. Suppose the

statement of the lemma Is true for n I when n 2. Tlien. using (11). we have
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a M t , Ia.UM, ia;UM,~ + aiM w r-,,(.UI lM,.N
SI ' 4 - 'a [n I-

n

,iI

r,( ) ' '( Y:3 afFnmJ+ XI j f 1 )l

i=2 cN, l EN N'EN,'I " -N

+( C )" 'a[rAM.I

i=1 NEN," jEN

which proves (9) for n. Q.E.D.

For any Information Index k in K, by zk we mean the random element In

Y, such that (zk.k )=z .s t )EZ is uniquely determined by k.

Lemma 4: For any partial information set Z whose index set is K, we have

p (z I Z) p (Z IK) = ( -I p (zk Ix)) p(x) (12)
kEK I

The proof of this lemma is a direct consequence of Assumptions [131] - [133]. In

order to avoid complication, we will assume that any term In (12) is strictly posi-

tive (at least in an appropriate a.e. notion).

The following two theorems are the main results of distributed estimation

for fusing the estimates at various nodes to obtain a global estimate.

Theorem 1: For every positive integer n and for any n partial information

sets, Z ....... Z,, we have

p(z I oZ,) c .11 ( 11 p) I ) (13)
1-1 N(N,"

where

A-8
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nt nz- P( Z. I UK)' I ( H p(KZ, f.Kp)' (14)
=' I '1 - NEN," lEN jEN

Proof: For any partial information set Z with Index set K, we define

a'Z - |piz, z). Then Lemma 4 Implies

aJZ] = p(Z) p(x I Z) p(z) ' (15)

Using the product version of Lemma 3 and applying (15) for each Z;, we have

aU zv I1( H a Inz1)'""
1=1 'l NEN," jEN

H( H p(f lz I K9)'-'
i1 NEN," EN jEN

f l( I p (z '
' NEN," 

j EN

''NEN*"

n

The last term becomes p(z)-' since (-l ) 1. Applying (15) to U Z

we have (13) and (14). Q.E.D.

Unfortunately, this theorem Is not sufficient to describe a general Informa-

tion fusion algorithm since (13) may contain probability densities conditioned by

intersections of Z, 's. However, these Intersections can be decomposed further by

Lemma 2 in the previous section. The result can be stated in the following

theorem. For notational convenience, we add an extra element i to the set I of

all the information nodes and let Jr-IU{i }. Then (f-<) Is constructed by letting

:i be the Immediate predecessor of all the minimum nodes In the original Infor-

mation griph I. <',. Then we have Z' -K 'Q-r-0.
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Theorem 2: For any communication receiving node i,, in l. 11, there exists a

,ub.;et f of set T of extended information nodes such that T < i (This means

I..t ,, for all I' in T.) and

pi'z CU"= jf lp(z f 2"') ..' (i)
s~l .'c T

where I is the set of immediate predecessors of i, (a(i))TT is .some indexed tuple

such that wT) is a nonzero integer for each T, and e is the normalizing constant

defined by

c = p (UZ" IUK,,)' H p (Zr'1' K"Y" (17)
sEI iEzI iET

Proof: It follows directly from Theorem 1 that

p(Z I LIZ'') - c CI ( H p(rI z')) (18)
ei~ ,n--1 J ,,,EJ

where c' Is an appropriate normalizing constant and ,n ={J ClI # (J)=m}.
When some J In (18) is not a singleton, we have n"' = 0 or Z(') for some i'

JEJ

in I, or otherwise, by Lemma 2. there exists a J'CI such that J'<J and

U Z-" ,)'-- Z'). Then we can substitute this factor using Theorem 1. Repeat-
j'E P j, E j

Ing this process as necessary but finitely many times, each factor in the right

hand side of (18) can be reduced to factors each of which is conditioned by Z''

for some t'<I or 0 (the a priori distribution). 'When we cancel the factors and

gather identical factors, we have (16) and (17). Q.E.D.

2.2 Dynamic Estimation Problems In dynamic estimation problems,
the object. to be estimated ,s a stochastic process. Thus we redefine x as a sto-

chastic process (r, )t'" on state space (X.B.1j). Since It. is In general lipossible to

estimate . Itself, :Ls being customly lr filtering problems, we are Interested In

estimating z, for a fixed time t In T or (xr ......x,.) for a given tuple (1,)," , of

times In T. We must alter the assumiptlons 11I) - [B3 according to this new

sihialltn, Alt hough we in ay lh icciIl n-intarkovl an processes, It seetics safe to
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maintain markovian properties to avoid any unnecessary Irregularity.

Assumptions:

[CIl (Absolute Continuity and Markovian Properties) The stochastic process

(z)teT is a temporally homogenlous Markov process with a state transition

probability,

F (E I = Prob ({x,+%, EE } I z, =z) (19)

for any t ET, for any At >0 such that t +AtET and for any EeB. For

any given finite set, {t ,, . ,t, }, the Joint probability distribution of

(z ....... x,,) is absolutely continuous with respect to product measure A".

[C21 (Independence) Random set K and random ordered set (1,<) are indepen-

dent of (zt )tET.

fC31 (Conditional Independence and Absolute Continuity) For each (t.s) In

T X S, we have a transition probability density function p (. I) from the

state space to the Information format space such that, for any partial Infor-

mation Z with Index set K, we have

p(Z I (zt)EK-) -p(K) 1l- p(zk IZt,) (20)
kEK

where ( t k ,s ):-- k and (Zk ,k ) Is the unique element in Z for each k In K.

If K Is known beforehand and if z In Section 2.1 Is replaced by (zI,)k ,i

Theorems 2 and 3 are still valid when x is replaced by (z,,). This, however,

requires the computation of a high dimensional probability distribution and is not

very realistic. Unfortunately, unless we have make a rather strict. restrictions,

i.e.. b)-directlonal determInisity, It. may be Impossible to have a formula which is

both general and applicable.

I eI it:uI .~I h, IWI i tlrfflhl,,i:it u 7 U Zi (Y,, )k, K ehi li h .r,. K IZ .h huv\ .. 'i ror .
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Deterministic Proce.sses: We considered a special class of deterministic

processes with the following assumption:

Assurnption JI)i Stochastic process (z, )IcT is bl-dlrectionally deterministic. I.e.,

there exists a one-parameter group of homeomorphic operators on X, (4 ),

such that

Prob ({t EE} I x-z) x(t -,,(x ):E (21)

for all (.t ')E T X T (X(.;A ) is the indicator function of set A.).

With this assumption, the stochastic process Is deterministic In both direc-

tions of time. Therefore, when a set of data Is accumulated In the past, we can

consider the present time as the initial time. We also assume that extrapolation

of state probability density can be done In both directions freely. Then, we can

restate Theorems I and 2 In Section 2.1 as follows:

Theorem 8: Let i=(tnCR) be a communication receiving node in ICR

and {i ...... iM } be the set of all the immediate predecessors of i. Then we have

M M

P(xt U Z.)' c I( H' p(x, Z)) ' (22)M=! M =I (JCO .... A04 (J)=M) fEJ

where Z,, -Z (
' and

Al Af Al
, U Z,, U Km) ' 1 p(Nz, i-K) ( 'n (23)

M=1 rn-i M=1 IJC(I....M J.# J=m) 'EJ iEJ

with Kn ==K4'" . Moreover, there exists a subset T of set 1 of extended informa-

tion nodes such that Tf< 1 and

P(Te I U Z,) d II p(x, I Z (24)
M=1 TcT

where ((aT))7c is some indexed tuple such that a(T) is a nonzero integer for each

t and
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I
Al At

d -p( U Z. U K., p (ZU K(UI (25)
'n - a rn -- I T

iProof: In the proof of Theorem 1, redefine a [ZI as

a IZl I k IH P - (z)).
k EK

Then we can carry out the same proof as In Theorems 2 and 3. Q.E.D.

3. Distributed Multi-Target Tracking

In Appendix C of [11, distributed multi-target tracking problems were for-

mulated assuming broadcasting-type communication. In this section, we general-

ize the results stated there to distributed multi-target tracking with an arbitrary

Information graph.

3.1 Formalism of Multi-target Tracking Problems in multi-target track-

Ing problems, we assume stochastic processes whose states include number-of-

target component and sensor data Include number-of-measurement information.

For this purpose, we must reformulate the state space and the sensor format

spaces. In general, by a hybrid space, we mean a direct product of a measurable

set (called continuous part) in a Euclidean space and a finite set (called discrete

part). Let X be a hybrid space and ju be the direct product measure composed of

Lebesgue measure on the continuous part and the counting measure on the

discrete measure. Then we consider a stochastic process on

X= U X">x{n} (30)
n=1

where X" is a formal singleton. Thus, we write the stochastic process as

N T(t

which Is actually a stochastic process on X which is locally compact and metriz-

able with a a.pfnie nasurt, constructed by (it" .
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For each sensor a in S, let Y, be a hybrid space and

Y U = (Y.)"X{m} (31)

where (Y, )" Is again a formal singleton. Let j, be the hybrid measure on Y, for

each s. Then every Y, Is locally compact and metrizable with a o-finite measure

composed of (g0)M'=,. Thus every element In every Y. has a form ((y3 ),'=,.m) or

(9.0). The second element represents the number of measurements while the first

element Is the vector of measurement values In Y,. For each k In K, we may

write an element In Z uniquely determined by k as ((y.(k))NU, ).NM(k).k). We

also assume, for each k In K, a random function Ak whose domain Is Included In

{I ...... Nr } and whose range Is Included in {i ...... NM(k)}. j=Ak(i) means that the

i-th target is detected and creates the i-th measurement at k. This assumption

excludes split measurements. We also assume that there is no merged measure-

ment. This means every Ak is 1-to-1. We consider the following random sets

J = U {i.....NM (k)}x{k (32)
kEK

and

A {{(j,k)EJ I j=Ak()} I E{i ... NT}}\ {} (33)

We call any subset J of J a measurement index set. Then the no-split/no-

merged measurement assumption implies that, for any measurement index set J,

the restriction of A on J defined by

AIJ= {rfl I r E X) \ {0} (34)

satisfies the following conditions:

(I) Each member r of AIJ Is a subset of J and contains at most one point In

.i ..... N,(k )} X{k) for each kEK.

(2) Any two sets belonging to AIJ do not intersect.
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For each measurment Index set J, define

T(J) {TC J #(Tl k),} (35)

and

rnr 2 -=o for any
H(J) = jXCT(J)\{} I(r,,r2)EXx\ such that 7,34.. (36)

In (35) and other subsequent equations, we use the notation

r tk =rn({ . NM(k)}{})

for any set r. We call any element In T(J) a track on J and any element In H(J)

a hypothesis on J. According to these definitions, for any measurement Index set

J. AlJ Is In H(J) and each element in AIJ Is In T(J).

3.2 Information Fusion Problems The distributed estimation problem in this

multi-target tracking environment Is to obtain (in a distributed way)

Prob { AIJ' I Z'"'} for each Information node i In I where " IIs defined as

J) = {(j,k)EJ I k EK"i } (37)

This problem actually consists of two problems:

(1) (Hypothesis Formation) Suppose i0 Is a communication receiving node and

I is the set or its Immediate predecessor information nodes. If every node i

in I contains all the set of tracks and hypotheses on jP' , how can we con-

struct T(UJ" ' ) and H(UJ ') ?
iEl iEI

(2) (Hypothesis Evaluation) Suppose the above sets of tracks and hypotheses

are generated. How can we evaluate each hypothesis using the evaluation

made by the predecessor nodes ?
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We will discuss these problems separately in the following:

Hypothesis Formation: For each track r In T(J), each hypothesis X In H(J)

and each J CJ. we define the restriction of r on J and the restriction of X on J

by rnfi and

xvJ = {rjlI r!x} \ {o} (38)

respectively. Each of these restriction operations defines a partial order on T(J)

or H(J) which is arborescent (tree-like - for each element, the set of Its predeces-

sors is totally ordered). Moreover, the restriction operations are commutative

with the Intersection operation In the sense that (rNJ,))J 2=,rn,(JnJ.2) and

(xiJ,) I j. =,\ I (JnJ2) (39)

for any measurement Index sets, J, and J 2. (39) Is not quite obvious but can be

easily proved.

Let (J,.)iE, be an arbitrary tuple of measurement Index sets where I Is an

arbitrary nonempty set. Then we call any tuple (ri )i EI of tracks In IT(Jj) fus-
iEl

able If there exists a track r In T(UJ,) such that
iEl

rnf, = (40)

for all iEl. Similarly we call any tuple (Xi)iEl of hypotheses in 1JH(J,) fusable if

there exists a hypothesis X In HI(UJ,) such that
iEl

XjJ = X; (41)

for all iEl. The following !cmma gives a sufficient and necessary condition for

each of the above fusabllity definitlons:

Lcrnyna 5: Let (J, ),(, be an arbitrary tuple of measuremnent index sets.

Then we har"

(I) .1 ny track tiplc (, in i IT(.1, ) is fusable if and only if
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i, n(y,,nj,,) r= ,N, N Yj,, ,) (42)

for all (i.i..)EIX I

(2) Any hypothesis tuple (X, ),., in IIH(J) is fusable if and only if
iEl

I (J, n J,,) X, I(J, nJ,..) (43)

for all (t' .i.,)E Il I.

Proof: (1) and (2) state that a tuple of tracks (or hypotheses) Is fusable If and

only If they share the common predecessors In the overlapping measurement

Index set. I.e..

i U{J, nJ,. . (i,,ui) x I such that i,3i.,} (44)

In (1) and (2), the "only ir' parts are obvious. To prove the "iF" part of (1),

let r=-=Ur, and J=U.,.. Since every r, Is a subset of J,, rCJ. Let K be the
i:E iEI

Index set uniquely determined by J. Suppose there exists a k in K such that
#(rI k)>1. Then, since 1 < #(rI k)< .E#(r i Ik) and since each ri is a track

on Ji, there exists (i,.i , )EI X I such that # (ri, I k)=# (r I k)=l and r,:,r,. In

other words. ri, and ri, do not share a common predecessor on

{1....NAf}x{k}CJflJ, :, which contradicts with the assumption. Therefore, we

must have # (r I k)<I for all k in K, implying rET(J).

Since every r, Is Included in r and in J,, we have r, C rn J for every i In I.

Suppose there exists an i in I such that r, CrfJ,, I.e., there exists (j.k)crnJ,

such that (j,k) r1 . Then, since (j.k) Is In r, there must be i' In I such that

ii' and (j,k)Er,,, which Implies that r, and r,, do not share a common prede-

cessor on {I ...... NM(k)}X{k} and contradicts the assumption. We must have

rn .i, ri for all In 1, I.e., (r)i t is fusable.
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To prove the "If' part or (2). we assume #(1)=2. For # (1)>2, we ran
prove It similarly but need much more complicated notations and space. Suppose

(X,AX,),)H(J,)XH(J,) and (43) holds with I-{i.,}. Let K be the common

predecessor on J... Then, as shown in Lemma 1 of Appendix C of fI!. for

each E- and for each i in I, there exits a unique track rjr, which Is an exten-

sion of T i.e.. r,7)nf. r. Let

X ={U r, (7) 1ITEK} U (U (XAi (Q ri(7)))
tEI iE1 TEX

Then every r in X is a track on J and any two tracks In X do not Intersect.

Moreover, for every track r In X, we have either rn Ji rj (rfTl ) or rn Ji =0, i.e.,

XJ1i =X, for all i In I. Hence the hypothesis pair (X1,.Xj) Is fusable. When

#(I)>2, we must construct hypotheses similarly but we must start with the

common predecessor tracks in n J, and repeat the process for all the intersec-
iE/

tions with gradually fewer terms. Q.E.D.

Remark: Since JCJ Implies rnJET(J) for any track -ET(J), the restriction
operation (40) defined a mapping from T(UJ,) to .IT(J-). The definition of the

iEI iEl

fusability implies that the range of this mapping is exactly the set of all the fus-

able tuples of tracks. Suppose -rET(UJ,) and rnJ--ri for all i In I. Then,
iEl

Ur, - U(rfiJ) -rO(UJ )--I. Therefore, the unionization operation is Indeed

the Iayers, mapping, and hence, the set of all the tracks on U.i,. i.e., T(L!., ',. is
i E,' El

isomorphic to the set of ail the fusable tuples of tracks. Similarly JC. Implies

(XI J)EH(J) for any hypothesis XEH(UJ). Therefore the restriction operation
iE/

(41) defines a surjective mapping from H(UJ,) to the set or all the fusable
iEl

hypothesis tuples. This mapping, however, may not be bIjective "one-to-one). A

countercxarnple was given in [1].

Lemma 5 provides us with ways of generating T(UJ) and H(U.I,) from
icl i.El

I ITiJ, ) and Ill(J, ). respectively. However, checking the conditions described
If I ,(A I
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by (42) or (-t3) may not be directly conducted on the Information nodes which

precedes 1. Nonetheless, by applying Lemma 2 in Section 1, we can transform

(42) and (.13) Into a form by which predecessor-consistency tests are required only

on certain predecessor nodes of 1. The result Is stated as follows:

Theorem 4. Let i0 be a communication receiving node and I be the set of

all the immediate predecessors of it. For each (i,,i 2 )El xl, let [(i1 .i 2 ) be a set of

information nodes T such that T< i, and 7< '.2. Then, we have

(1) a necessary and sufficient condition for any track tuple (ri)iEIEV-T(J( )) to be
ijE

fusable is that, for any (i, .i.)EI X 1,

riFj ( )=rinj(l) (45)

for any TET(i.i 2 ), and

(2) a necessary condition for any hypothesis tuple (, ),EIE-H(J(w) to be fusable
iEl

is that, for any (i,i.,)EJ X I,

x -I jO) = xj, I jO) (46)

for any 'ETf (it,.i.,).

Proof: Suppose (i1 .i,)E XI. Then, by Lemma 2of Section 1, we have

u J(t) J1i (47)
i ET (i,. i2)

Therefore, If (45) holds for all T In T(il,.2), (42) holds. Conversely. for any i in

"(i,.i 2), _j(fJinj(',), and hence, (42) Implies (45) and (43) Implies (46). Q.E.D.

Remarks:

(1) For each (s ,i.,)EI XI such that i,4i.,, a set I(i,.i...) of common predecessors

I such that 7T<i1 and i<i., may not be unique. When the above theorem Is used

to test fusablilty, any Inforrnation node T In T(i,.i 2) such tha -I-,- with another
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i-' in 1(1'.,') can be excluded from T(i1 ,i.,).

(2) The type of tests defined by (45) or (40) provides a necessary and sufficlent
condition for track rusabllity but only a necessary condition for hypothesis fusa-

bility. This Is due to the fact that a fusable tuple of tracks produces only one

fused track but a fusable tuple of hypotheses may produce more than one

hypotheses. Thus, (47) is not a sufficient condition for the hypothesis fusability

as shown below:

Counterexample:

'7S

.,7

t

This is an example of broadcasting type communication and we have

__ _= ". Let (X,.X,) be an arbitrary pair of hypotheses

on JI I) and J , respectively, to be fused. They may share Identical predecessors

X7EH(J i ' ) and ),EH(J i .)) while predecessor X., on J ip of X, may differs from the

predecessor X on J (i of X.. In such a case, X, and X. cannot be fused.

By the fact stated in (2) of the above remarks, we cannot determine the

fusabIlity of hypothesis tuples by this theorem. However, part (I) of this theorem

can be used Indirectly to determine the fusabllity of hypothesis tupes according

to the theorem stated below. On the other hand, the :ibove th ,oremn In bw used
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TI

to screen hypothesis tuples for candidates to be fused.

Theorem 5: Let (Ji )I, be any tuple of measurement index sets and
J=UJi. Then, for any given XCT(J)\ (0) and any given (i )i ECHH(J,), we

iul sEl

have XEH( J) and X I J, =Xi for all i in I if and only if

(1) for any r in X, there exists a fusable track tuple (ri )iEiGH(X, U{0}) such that
'll

r Urj, and
iEI

(2) for all iE.! and and for all riEX,, there exists a unique r in X such that ri Cr.

Proof: [lif] Assume (1) and (2) hold for given XCT(J)\{0} and (Xj)iiEllHH(Ji).

To show XEH(J) It suffices to show X does not have any overlapping tracks. Sup-

pose there are overlapping tracks r, and r2 In X, I.e., (r,r2)E\X,, -T,4.., and

r,fnr.,7O. Then by (1). for each IE{i,2} there exists a fusable track tuple

(1TU)ijEII(IU{(0}) such that rj=UrI. Since r, n r,z4, there exists a
iEEl

(i .i2-)EI XI such that r11 nr..40. For each IE{i,2}, TL:EXj, because r11 $O. Since

XjEH(Ji,) for each 1, i1 =J 2 Implies rtj=r. ,. If we have ri C-r, and r jCr., the

uniqueness part of (2) Is violated. Therefore, we must have i,4i2 . On the other

hand, the fusability assumption In (I) Implies ri =r n Ji for each (l.)E{I,2}XI.

Hence we have

n r.: =(r n s ,) n (r.n j, .)c -r2 i n j., n it.,

which means Ti iTr,, $0. Also the uniqueness part of (2) prohibits r,,-=r..,

This contradicts with X,,EH(Jj,), r, EXi, and r2,jEXi. Therefore. X must be a

hypothesis on J, or XEH(J).

l,et, i7i. Suppose r, CX,. There exist.s a rEX such that r, Cr by (2). Then,

by (i). there exists a fusable track tuple (r ,,),,'E/Ei(X,'U{O})_ such that r U ','.

Then, for each i, ih ftisahillty implies 0/r, C rl .i, r',. Since \, C(I(.1,), we
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I

must have r, r,, I.e.. r, ECXJ, On the other hand, If r, EXIJ, I.e., If r, :,40 and

rn"J, - r,, (1) and (2) similarly Imply r, -X, . Hence we have XJJ, -- X,.

jonly If] Suppose XEII(J) and XJJ, -- X, for all i El. For all rEX and for all

iEl, let r, - rf1J, . Then. fr, )j. apparently satisfies the requirements of (1). (2)

follows directly from XjJJ, :-X,. X Is a hypothesis on J, and hence, does not have

any overlapping tracks. This proves the uniqueness part. Q.E.t)

Remark: From the proof It Is clear that the condition, ri Cr In (2) of Theorem 5

can be replaced by r,- j,

Hypothesis Evaluation: In addition to Assumptions [A1] - [AS], [CI] - !C31

and the assumptions made earlier In Section 3.2, we have to add the following:

JEl) (Polsson-l.I.d. Targets) The number Nr of targets Is constant over time

and has a Polsson distribution with mean vo>O. Given NT >0, !z, (t _ is

a system of Independent Markov processes sharing the Identical joint distri-

butions. Moreover, each process Is bi-directionally deterministic having an

Identical group (tt ) of deterministic state transitions and an Identi-

cal Initial state distribution which has density q.(z(to)).

[E21 (Independent Detection) For each k =(st )EK, we have'

Pro (Dom (A (k)) (x, (tJI Nr) 4)

Nt

T1I pl, %,! (t) k )\(,:Jot'n4 k, (-p) (x, (t ) I k ) )' .' 'I

[E31 (Random Assignment) For any k EK, given NA,(k) and Dom(A (k)), every

realization of A (k ) is equally probable.

JE4J (False Alarm Number) For each k -(s.t )EK, we have

I Fo,,r a,,,.N r,,,,,.,, f XE ---Y , D om (f ) i. ii,- , t,,,,, , a,,,, I (f ) 1.1, r:,,,'w. X(- ) 1- 11, c .,2-
f,, ri, o, h,,-i -' E .i,. W( ;[.) .I - If " Or r Ch,' r\ -
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I'rob (NI(k ) IA (k ).(z1 (t ) )NT) PA' (NkI(k ) -# (fIm (A (k ))) fk ) (49)

fES]5j (independent Measurement) For each k (s ,1 )EK and

Z~ <-(ky 1 (k u724k ,'.,(fk ).k) C-2, we have

Prob ((yj (t ))M( =1E(dy, ); -"( 1 A (k ),NM(k ),(z, ):I,NT ) -(50)

(.f LA P (A) z.(t ))p.(dyA (j)))( HL p-A (yjI jk )pu(yj)iEDom(.4 )EJF.4 (k)

where

4.A (k) N= {. A(k )I\Im(A (k) (51)

For any track 1ET(J) and any Information set Z with Index set K and

measurement Index set J, define track likelihood of track r given Z by

I (r,Z) =v 0 c (r.Z) (52)

where

Z f( g (y [r k~ -i4(x)k)) q~()td)(53)

with Z-z.{((yjk)),bj ,~(k ), 3k - ) k EK,

IVr kT - j( ) i j k -rIk / (5-1)

anid
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z pM (y i.k)pI(Z k Ir (O
g(y ,k ) - I-PD (X k) otherwise

For any t T, let the measure a, on X be defined by

o,(E f q,,,(z)dz) (56)

and let q, (.) be the density of a, with respect to p. Then we have the following

theorem:

Theorem 6: Let Z be any information set, and let K and J be the

corresponding index set and measurement index set. Then we have
(1)

Prob(AIJ Z) P(Z) exp(l(O.Z)-v(,) (57)

H (NFA (k )!PN,.(NFA(k k 1 prA(y I k  I ZkEK NM(k)! • E JFA ( I)VJ

where NFA(k)==NM(k)- #(Ur f k).

(2)

t(K) E(N,-# (AIJ) AJ.K) I (O.Z) (58)

(3) For any t ET,

Prob {(z,(t ))Iedx, ),= [ .Nr ,AjJ.Z } (59)

(IP1(X1)yiI r,Z)1s~dx1 j~1 1))( H p P(_z: 10 0Z)jt(dx,)

where M:AIJ-IT is one of the equally probable 1-to-I assignment functions from

tracks to target indices, and
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Pt(X I rZ) = e(T.Z) '(H g(y'r k] 14 ,, (z ).k)) qt(x) (60)

Proof: Suppose K Is ordered arbitrarily as K =={k,.k...k } such that tk, ,<k.

"Then. according to Corollary to Theorem 2 In Section 5 of [2], we have (57) with

i(r.Z) V'_ f (y[r Ik, Iz.k)p,, (x irnJ,_,.Z,_,)id)(1)

where J--={(j.ki.)EJ i'<i} and Z,--{(q.k1,)EZ iV'<i}. By means of mathemati-

cal Induction, we can show

i fg(y [rl kij I z.k,)pt,,(z rfl Jj_,,Zi_,)p(dz (02)

=f m

---- -I]-[ . (y frj k;]I *! ,-t(z ).k; )qt,(z )p(dz)

= Hg (y [r I k] I -t _t (x ).k, )q, (x )(dr)

Thus Part (1) follows from (52) - (56) and (61) - (62).

According to Part [II] of Theorem 2 In Section 5 of [2], with the same order-

ing of K as above, we have

Vk, = Vk, f g(oi x.ki)pt (x J O.Zj_,)p(dx) • (63)

By repeatedly applying (63), we obtain Part (2). Part (3) then follows from

Lemma 2 and Part [1] of Theorem 2 of Section 5 In [2]. Q.E.D.

The distributed version of this theorem follows:

Theorem 7: Let i,,=z-(t,n.CR) be a communication receiving node in I'('?

and I be the set of all the immediate predecessors of i0 . Let ZzljZ"i with K

and J be the associating index set and measurement index set. Let (T,a) be the
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pair which satisfies the conditions (24) and (25) of Theorem 3. Then we have
(1)

Prob (AIJ I Z) d F1 Prob 1AIJ(' ') 1 Z(')"(1 [-I I(r,(Z(')TET) (64)
TET .v

where

d P(Z) ' (IP{z(Th) exp(t4K) - Eq( 1 (65)
TET TET

TT

ET(r) - 0 otherwise (67)

and

C (r(Z)')rEr) fi fTP, (x i (rn (68)

(2)

P (z Ir.Z) C(r.(Z') "ET) ' 1 Pt (z (rn P (69)TET

and

(3)

+u) = l(<.<z'% r) = (-1 PKt'()'"z')f1pt(x I OXZ )'') p(d ) (70)
SETSE

Proof: [et (T.a) be the pair which satisfies the conditions (24) and (25). Then we

should first note that, by Lemma 3 and Theorems I and 2, we have
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a!KI , Ha, UH 1 a)'' 1H II(a 1 (71)
kEK TIT kEK t

I
)  

'ET kEK"'

for any (ak )EK such that ak >o for all kEK. Also, as shown In the proof of

Theorem 1, If ak Is constant., I.e., If ak, -=Z for all k EK, we have a K---., For

notational sinpliclty, we abreviate notations as gk (Xr) - g(y Iy k -(x ).k)

and

_A NA (k (N.4(k k H PFA(yj(k)k
N PN (k j E J1 .4 I (

Then, It follows from Part (1) of Theorem 6 that

H Prob (AIJ"' I Z 
T )  (72)

tET

= H(P(Z",)-' exp(1(O.Z'r')-v 0) ( Hj[I"A) ( HF(r,Z)))) (' ,

iET kEK(,' rE.V"

kEK(' iET '

It follows from (71) that

H FA =  f _ II(. A)"(-- (73)

kEK TET kEK t'3

and

(1II gk (z r))q, (z) H H -_(g, (z r)q, (z )) '
,( (74)

KTET kEK'"

On the other hand, It follows from (60) that

P,(z rJrlJ(i).ZYb) -'
-

r  I](g,(z.rfnJ( )q (x))'""' (75)
k K'

for each I ET. Then It follows from (52). (53), (74) and (75) that

A-27



I(r,.Z) (l ,rn f , i f , z ,(dz )) (76)

Part (1) then follows from (72), (73) and (76). Parts (2) and (3) cab be proved

similarly. Q.E.D.

Remark: By the definition of " by (68) - (67), we can interpret i as track-to-

track likelihood of the tuple (r'Jd('),-ET of tracks. This likelihood can also be

defined as

1 (r.Z)E )  f I (z Ji),Z')" ) (77)

where

P I(x (rflj(-,))Z~' ) - (x(K())T('r )) Pt(x I (rnflJ()).Z'- )) (78)

4. Conclusion

Solutions were given to distributed estimation problems and to distributed

multitarget tracking problems with arbitrary communication patterns defined by

information graphs In bl-dlrectionally diterminlstic cases. It Is expected that the

results described In this appendix provide sufficiently functioning distributed

algorithms even without the bi-directlonal determinancy if the randomness in

state transition is small and the communication is reasonably frequent.
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